In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingne...In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution.展开更多
依托济南市济泺路穿黄隧道东线工程,选取1130组掘进数据,按照施工顺序划分数据集,采用粗细程度、软硬程度、密实程度和渗透能力4个维度描述土体的物理力学状态,分别建立基于长短期记忆模型(Long-Short Term Memory,LSTM)、随机森林模型(...依托济南市济泺路穿黄隧道东线工程,选取1130组掘进数据,按照施工顺序划分数据集,采用粗细程度、软硬程度、密实程度和渗透能力4个维度描述土体的物理力学状态,分别建立基于长短期记忆模型(Long-Short Term Memory,LSTM)、随机森林模型(Random Forest)和BP神经网络的盾构隧道掘进参数预测模型,详细对比分析3种模型对总推力和掘进速度的预测效果。研究表明:(1)LSTM模型在按施工顺序预测盾构总推力和掘进速度时,平均相对误差仅为3.72%和7.41%,模型训练时间均在20 s以内,整体表现优于随机森林模型和BP神经网络;(2)在地形发生剧烈变化以及盾构掘进线路在直线与平曲线过渡时,总推力和掘进速度出现较大波动,LSTM模型预测结果相对误差偏大的组数仅占4%与10.2%,且总体误差满足施工要求;(3)随机森林模型预测结果的相对误差在总推力和掘进速度剧烈波动的环段处偏大,数量偏多,因此在按施工顺序预测时不是优选。展开更多
基金This research is funded by Vellore Institute of Technology,Chennai,India.
文摘In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution.
文摘依托济南市济泺路穿黄隧道东线工程,选取1130组掘进数据,按照施工顺序划分数据集,采用粗细程度、软硬程度、密实程度和渗透能力4个维度描述土体的物理力学状态,分别建立基于长短期记忆模型(Long-Short Term Memory,LSTM)、随机森林模型(Random Forest)和BP神经网络的盾构隧道掘进参数预测模型,详细对比分析3种模型对总推力和掘进速度的预测效果。研究表明:(1)LSTM模型在按施工顺序预测盾构总推力和掘进速度时,平均相对误差仅为3.72%和7.41%,模型训练时间均在20 s以内,整体表现优于随机森林模型和BP神经网络;(2)在地形发生剧烈变化以及盾构掘进线路在直线与平曲线过渡时,总推力和掘进速度出现较大波动,LSTM模型预测结果相对误差偏大的组数仅占4%与10.2%,且总体误差满足施工要求;(3)随机森林模型预测结果的相对误差在总推力和掘进速度剧烈波动的环段处偏大,数量偏多,因此在按施工顺序预测时不是优选。