期刊文献+
共找到244篇文章
< 1 2 13 >
每页显示 20 50 100
Predicting and Curing Depression Using Long Short Term Memory and Global Vector
1
作者 Ayan Kumar Abdul Quadir Md +1 位作者 J.Christy Jackson Celestine Iwendi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5837-5852,共16页
In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingne... In today’s world, there are many people suffering from mentalhealth problems such as depression and anxiety. If these conditions are notidentified and treated early, they can get worse quickly and have far-reachingnegative effects. Unfortunately, many people suffering from these conditions,especially depression and hypertension, are unaware of their existence until theconditions become chronic. Thus, this paper proposes a novel approach usingBi-directional Long Short-Term Memory (Bi-LSTM) algorithm and GlobalVector (GloVe) algorithm for the prediction and treatment of these conditions.Smartwatches and fitness bands can be equipped with these algorithms whichcan share data with a variety of IoT devices and smart systems to betterunderstand and analyze the user’s condition. We compared the accuracy andloss of the training dataset and the validation dataset of the two modelsnamely, Bi-LSTM without a global vector layer and with a global vector layer.It was observed that the model of Bi-LSTM without a global vector layer hadan accuracy of 83%,while Bi-LSTMwith a global vector layer had an accuracyof 86% with a precision of 86.4%, and an F1 score of 0.861. In addition toproviding basic therapies for the treatment of identified cases, our model alsohelps prevent the deterioration of associated conditions, making our methoda real-world solution. 展开更多
关键词 Emotion dynamics DEPRESSION heart rate internet of things global vector long short term memory machine learning sentiment analysis
下载PDF
基于BiLSTM-XGBoost混合模型的储层岩性识别 被引量:1
2
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 BiLSTM XGBoost
下载PDF
基于改进Q学习算法和组合模型的超短期电力负荷预测
3
作者 张丽 李世情 +2 位作者 艾恒涛 张涛 张宏伟 《电力系统保护与控制》 EI CSCD 北大核心 2024年第9期143-153,共11页
单一模型在进行超短期负荷预测时会因负荷波动而导致预测精度变差,针对此问题,提出一种基于深度学习算法的组合预测模型。首先,采用变分模态分解对原始负荷序列进行分解,得到一系列的子序列。其次,分别采用双向长短期记忆网络和优化后的... 单一模型在进行超短期负荷预测时会因负荷波动而导致预测精度变差,针对此问题,提出一种基于深度学习算法的组合预测模型。首先,采用变分模态分解对原始负荷序列进行分解,得到一系列的子序列。其次,分别采用双向长短期记忆网络和优化后的深度极限学习机对每个子序列进行预测。然后,利用改进Q学习算法对双向长短期记忆网络的预测结果和深度极限学习机的预测结果进行加权组合,得到每个子序列的预测结果。最后,将各个子序列的预测结果进行求和,得到最终的负荷预测结果。以某地真实负荷数据进行预测实验,结果表明所提预测模型较其他模型在超短期负荷预测中表现更佳,预测精度达到98%以上。 展开更多
关键词 Q学习算法 负荷预测 双向长短期记忆 深度极限学习机 灰狼算法
下载PDF
基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断
4
作者 王福忠 任淯琳 +1 位作者 张丽 王丹 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第5期118-126,共9页
目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输... 目的为了解决双向DC-DC电力变换器的软故障诊断精度不高的问题,方法提出基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型。首先,分析双向DC-DC电力变换器中电容、电感和MOSFET管的故障机理,通过仿真实验模拟各元件失效后变换器的输出电气参数变化,从而确定变换器不同元件故障时对应的故障特征参数;其次,构建改进的LSTM-SVM双向DC-DC电力变换器故障诊断组合模型,在LSTM中添加Mogrifier门机制,提高LSTM提取时间序列原始数据中微弱特征的能力;最后,由于传统LSTM的末端分类器为Softmax,其主要解决单一元件诊断问题,变换器故障类型较多,维数较高,所以采用麻雀搜索算法优化的SVM代替原有的Softmax函数,对LSTM输出的数据进行故障分类,提高故障诊断的准确率。设置双向DC-DC电力变换器充放电两种状态下,包含电解电容、电感和MOSFET单双管故障在内的24组故障,分别采用本文构建的改进的LSTM-SVM和原始的LSTM-SVM双向DC-DC变换器故障诊断模型进行诊断。结果结果表明,改进的LSTM-SVM故障诊断模型诊断准确率平均值为99.71%,原始的LSTM-SVM故障诊断模型诊断准确率平均值为88.48%,改进的LSTM-SVM故障诊断模型对各元件的故障诊断正确率均高于原始的LSTM-SVM故障诊断模型的。结论基于改进LSTM-SVM的双向DC-DC电力变换器故障诊断模型实现了对双向DC-DC电力变换器中的电解电容、电感和MOSFET单双管故障的准确诊断。 展开更多
关键词 双向DC-DC变换器 软故障 改进长短期记忆网络 麻雀搜索 支持向量机 故障诊断
下载PDF
基于粒子群优化的盾构推进参数预测算法
5
作者 周奇才 姜宽 +2 位作者 王耀 张恒 陈传林 《中国工程机械学报》 北大核心 2024年第4期528-533,共6页
为了提高传统机器学习模型在盾构推进参数方面的预测精度,提出了基于粒子群优化(PSO)的混合模型算法。以推进油缸推力和位置预测为例,阐述了PSO优化的混合模型构建流程。以粒子群优化模型为基础,分别建立混合多层感知机(MLP)油缸推力模... 为了提高传统机器学习模型在盾构推进参数方面的预测精度,提出了基于粒子群优化(PSO)的混合模型算法。以推进油缸推力和位置预测为例,阐述了PSO优化的混合模型构建流程。以粒子群优化模型为基础,分别建立混合多层感知机(MLP)油缸推力模型、混合长短期记忆(LSTM)人工神经网络油缸推力预测模型,以及混合LSTM油缸位置预测模型。以实际工程数据为例,完成多种混合预测模型的构建,并与RF、XGBoost等传统模型对比,验证所提方法和模型的有效性和先进性。实验表明:经过PSO优化的模型准确率均有不同程度的提升,本文提出的基于粒子群优化模型对指导掘进参数调控、辅助操作人员掘进等具有一定的工程价值。 展开更多
关键词 盾构机 粒子群优化 机器学习 长短期记忆人工神经网络 推进油缸
下载PDF
基于SVM-STL-LSTM的区域短期电力负荷预测研究 被引量:2
6
作者 王晨 李又轩 +1 位作者 吴其琦 邬蓉蓉 《水电能源科学》 北大核心 2024年第4期215-218,共4页
针对区域电力负荷的时间序列数据随机性强、预测精度低及单一模型的数据特征提取能力差等问题,提出了一种支持向量机(SVM)、STL时序分解法、长短期记忆神经网络(LSTM)组合的电力负荷预测模型。该模型利用SVM对时间序列的电力负荷数据进... 针对区域电力负荷的时间序列数据随机性强、预测精度低及单一模型的数据特征提取能力差等问题,提出了一种支持向量机(SVM)、STL时序分解法、长短期记忆神经网络(LSTM)组合的电力负荷预测模型。该模型利用SVM对时间序列的电力负荷数据进行初始预测,并通过STL时序分解法对残差序列进行时序分解,从而提高残差序列的稳定性,减小其随机性,最后用LSTM对SVM的预测误差进行修正。试验结果证明,该方法利用误差修正可有效处理随机性强的数据,有利于预测结果的稳定性,提高预测精度。 展开更多
关键词 组合模型 支持向量机 STL时序分解 长短期记忆网络 短期预测 误差修正
下载PDF
基于深度学习的文本分类研究综述 被引量:2
7
作者 汪家伟 余晓 《电子科技》 2024年第1期81-86,共6页
与传统的机器学习模型相比,深度学习模型试图模仿人的学习思路,通过计算机自动进行海量数据的特征提取工作。文本分类是自然语言处理中的一个重要应用,在文本信息处理过程中具有关键作用。过去几年,使用深度学习方法进行文本分类的研究... 与传统的机器学习模型相比,深度学习模型试图模仿人的学习思路,通过计算机自动进行海量数据的特征提取工作。文本分类是自然语言处理中的一个重要应用,在文本信息处理过程中具有关键作用。过去几年,使用深度学习方法进行文本分类的研究激增并取得了较好效果。文中简要介绍了基于传统模型的文本分类方法和基于深度学习的文本分类方法,回顾了先进文本分类方法并重点关注了其中基于深度学习的模型,对近年来用于文本分类的深度学习模型的研究进展以及成果进行介绍和总结,并对深度学习在文本分类领域的发展趋势和研究的难点进行了总结和展望。 展开更多
关键词 深度学习 自然语言处理 文本分类 机器学习 神经网络 预训练模型 注意力机制 长短期记忆网络
下载PDF
基于机器学习的黑龙江省强降水致灾预估方法研究
8
作者 李昊宸 邵源铭 +4 位作者 杨洪伟 蒋慧亮 徐永清 李亚滨 魏磊 《灾害学》 CSCD 北大核心 2024年第3期60-65,共6页
采用黑龙江省1984—2019年各县强降水灾情资料和逐日降水资料,以逻辑回归和长短时记忆网络模型为基础,建立了黑龙江全省、大兴安岭、小兴安岭、松嫩平原、三江平原和东南半山区的强降水致灾与否二分类预估模型。通过机器学习,得到黑龙... 采用黑龙江省1984—2019年各县强降水灾情资料和逐日降水资料,以逻辑回归和长短时记忆网络模型为基础,建立了黑龙江全省、大兴安岭、小兴安岭、松嫩平原、三江平原和东南半山区的强降水致灾与否二分类预估模型。通过机器学习,得到黑龙江省以及5个地区判断强降水致灾与否的最佳观测天数在4~6 d、最佳的日降水量阈值为16~20 mm。比较全连接逻辑回归模型、优先考虑日期的部分连接逻辑回归模型D、优先考虑站点的部分连接逻辑回归模型S和长短时记忆网络LSTM模型等四个模型的表现,前三种逻辑回归模型表现差距不大,相对表现最好的全连接模型,其在大部地区所表现的准确率、精确率、召回率和F1分数均在0.7以上,而LSTM模型只在大兴安岭表现更好一些。 展开更多
关键词 机器学习 逻辑回归模型 长短时记忆网络模型 强降水致灾预估模型 黑龙江
下载PDF
基于长短时记忆网络的顶托影响下干支流洪水模拟研究
9
作者 张艺佳 吴剑 +2 位作者 彭勇 丁勇 郭家园 《水电能源科学》 北大核心 2024年第10期24-28,共5页
干支流交汇河段易发生洪水相互顶托现象,造成河段持续处于高水位,极大地增加了洪水模拟的难度。以三岔河口上游受顶托影响显著的嫩江大赉站为研究对象,首先分析识别大赉站历史洪水的顶托关系,并根据洪水顶托关系划分洪水类型;在此基础... 干支流交汇河段易发生洪水相互顶托现象,造成河段持续处于高水位,极大地增加了洪水模拟的难度。以三岔河口上游受顶托影响显著的嫩江大赉站为研究对象,首先分析识别大赉站历史洪水的顶托关系,并根据洪水顶托关系划分洪水类型;在此基础上采用长短时记忆(LSTM)网络建立洪水模拟模型,评估模型的模拟效果。结果表明,采用流量、水位变化率可以较为有效地识别洪水顶托关系,历史上嫩江受到洪水顶托影响的年份较多;LSTM模型输入中仅考虑上游来水对大赉站流量模拟精度影响相对较小,而对水位模拟精度影响显著;考虑顶托影响的LSTM模型对大赉站的流量、水位模拟精度均较高。可见,所构建的LSTM模型能较准确地模拟出顶托影响下的大赉站洪水过程,为类似流域或站点的洪水模拟提供参考。 展开更多
关键词 机器学习 长短时记忆网络 洪水顶托 洪水模拟
下载PDF
基于BiLSTM-LSSVM的螺杆转子铣削加工廓形预测
10
作者 李佳 孙兴伟 +3 位作者 赵泓荀 穆士博 刘寅 杨赫然 《组合机床与自动化加工技术》 北大核心 2024年第9期153-156,162,共5页
针对螺杆转子盘铣刀加工过程中的轮廓预测问题,提出了基于双向长短时神经网络-最小二乘支持向量机(BiLSTM-LSSVM)的螺杆廓形预测方法。首先,对加工过程中的振动信号进行采集并进行降噪预处理,降噪后的信号进行降采样处理随后输入BiLSTM... 针对螺杆转子盘铣刀加工过程中的轮廓预测问题,提出了基于双向长短时神经网络-最小二乘支持向量机(BiLSTM-LSSVM)的螺杆廓形预测方法。首先,对加工过程中的振动信号进行采集并进行降噪预处理,降噪后的信号进行降采样处理随后输入BiLSTM中进行时序预测;其次,对时序预测后的信号进行特征提取,将提取后的特征向量输入LSSVM进行廓形预测;最后,以五头螺杆为例通过正交实验对BiLSTM-LSSVM模型进行试验验证,并对预测廓形进行误差补偿实验。实验结果表明,提出的基于BiLSTM-LSSVM的螺杆廓形预测模型可对螺杆转子盘铣刀加工螺杆廓形进行准确预测,进而为螺杆转子加工廓形补偿提供支持。 展开更多
关键词 螺杆转子 长短时神经网络 最小二乘支持向量机 廓形预测
下载PDF
基于数字孪生与多模型融合的多元负荷短期预测
11
作者 冯佳威 王海鑫 +3 位作者 杨子豪 陈哲 李云路 杨俊友 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期97-106,共10页
针对多元负荷呈波动性和非线性特性导致预测模型稳定性差和精确度低等问题,提出一种基于数字孪生与多模型融合的多元负荷短期预测方法。首先,根据数字孪生体中气象和负荷信息,利用最大信息系数(MIC)分析多源数据信息间的耦合特性,基于... 针对多元负荷呈波动性和非线性特性导致预测模型稳定性差和精确度低等问题,提出一种基于数字孪生与多模型融合的多元负荷短期预测方法。首先,根据数字孪生体中气象和负荷信息,利用最大信息系数(MIC)分析多源数据信息间的耦合特性,基于数据时序性和周期性构建筛选信息特征。其次,采用自适应局部迭代滤波(ALIF)将历史多元负荷数据进行分解,得到不同频率下固有模态函数(IMF)分量。然后,采用核极限学习机(KELM)和双向长短期记忆网络(BiLSTM)预测高频和低频负荷分量,融合重构得到初始负荷短期预测结果。最后,利用数字孪生体补偿初始预测结果,得到最终负荷预测结果。仿真结果表明,与单预测模型及未基于数字孪生预测模型相比,所提方法具有更好的稳定性,能有效应对负荷波动变化和非线性,提升模型预测精度。 展开更多
关键词 数字孪生 负荷预测 自适应滤波 新型电力系统 核极限学习机 双向长短期记忆网络
下载PDF
基于MacBERT与对抗训练的机器阅读理解模型
12
作者 周昭辰 方清茂 +2 位作者 吴晓红 胡平 何小海 《计算机工程》 CAS CSCD 北大核心 2024年第5期41-50,共10页
机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测... 机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测结果。为了提高模型的泛化能力和鲁棒性,提出一种基于掩码校正的来自Transformer的双向编码器表示(Mac BERT)与对抗训练(AT)的机器阅读理解模型。首先利用Mac BERT对输入的问题和文本进行词嵌入转化为向量表示;然后根据原始样本反向传播的梯度变化在原始词向量上添加微小扰动生成对抗样本;最后将原始样本和对抗样本输入双向长短期记忆(Bi LSTM)网络进一步提取文本的上下文特征,输出预测答案。实验结果表明,该模型在简体中文数据集CMRC2018上的F1值和精准匹配(EM)值分别较基线模型提高了1.39和3.85个百分点,在繁体中文数据集DRCD上的F1值和EM值分别较基线模型提高了1.22和1.71个百分点,在英文数据集SQu ADv1.1上的F1值和EM值分别较基线模型提高了2.86和1.85个百分点,优于已有的大部分机器阅读理解模型,并且在真实问答结果上与基线模型进行对比,结果验证了该模型具有更强的鲁棒性和泛化能力,在输入的问题存在噪声的情况下性能更好。 展开更多
关键词 机器阅读理解 对抗训练 预训练模型 掩码校正的来自Transformer的双向编码器表示 双向长短期记忆网络
下载PDF
基于机器学习的盾构掘进参数预测 被引量:2
13
作者 熊英健 贾思桢 +2 位作者 刘四进 杜昌言 历朋林 《铁道标准设计》 北大核心 2024年第1期155-166,共12页
依托济南市济泺路穿黄隧道东线工程,选取1130组掘进数据,按照施工顺序划分数据集,采用粗细程度、软硬程度、密实程度和渗透能力4个维度描述土体的物理力学状态,分别建立基于长短期记忆模型(Long-Short Term Memory,LSTM)、随机森林模型(... 依托济南市济泺路穿黄隧道东线工程,选取1130组掘进数据,按照施工顺序划分数据集,采用粗细程度、软硬程度、密实程度和渗透能力4个维度描述土体的物理力学状态,分别建立基于长短期记忆模型(Long-Short Term Memory,LSTM)、随机森林模型(Random Forest)和BP神经网络的盾构隧道掘进参数预测模型,详细对比分析3种模型对总推力和掘进速度的预测效果。研究表明:(1)LSTM模型在按施工顺序预测盾构总推力和掘进速度时,平均相对误差仅为3.72%和7.41%,模型训练时间均在20 s以内,整体表现优于随机森林模型和BP神经网络;(2)在地形发生剧烈变化以及盾构掘进线路在直线与平曲线过渡时,总推力和掘进速度出现较大波动,LSTM模型预测结果相对误差偏大的组数仅占4%与10.2%,且总体误差满足施工要求;(3)随机森林模型预测结果的相对误差在总推力和掘进速度剧烈波动的环段处偏大,数量偏多,因此在按施工顺序预测时不是优选。 展开更多
关键词 机器学习 掘进参数 长短期记忆模型 随机森林 BP神经网络
下载PDF
基于Transformer与改进记忆机制的用电量预测研究
14
作者 蔡岳 张津铭 +2 位作者 郭晶 徐玉华 孙知信 《信息技术》 2024年第6期67-74,79,共9页
近年来我国经济的高速发展对电力配置提出了更高要求,实现电力资源的高效配置需要更加精准的用电量预测。随着人工智能、机器学习等技术的发展,高效精准的用电量预测成为可能。目前该领域普遍使用Long Short-Term Memory (LSTM)及其变... 近年来我国经济的高速发展对电力配置提出了更高要求,实现电力资源的高效配置需要更加精准的用电量预测。随着人工智能、机器学习等技术的发展,高效精准的用电量预测成为可能。目前该领域普遍使用Long Short-Term Memory (LSTM)及其变种模型,但准确度相对较低。文中提出了一种基于改进记忆机制与Transformer的用电量预测模型,使用Transformer编码输入,提出了一种新型记忆机制来执行预测。实验表明该方法相较随机森林回归和LSTM及其变种模型,一周内平均误差分别下降9.05%与5.32%,模型收敛速度更快且具有较好的泛化性能。 展开更多
关键词 记忆网络 TRANSFORMER 时序预测 机器学习 长短期记忆
下载PDF
瑞利参数在海浪波高机器学习预测中的应用
15
作者 胡明浩 谢玲玲 +1 位作者 李明明 梁朋 《海洋与湖沼》 CAS CSCD 北大核心 2024年第2期318-331,共14页
海浪直接影响海上活动和航行安全,同时也蕴藏着巨大的可再生能源,对海浪核心参数之一波高预测至关重要。基于2015年7月~2022年6月山东小麦岛(36°N,120.6°E)站点实测的波高数据,利用反向传播神经网络(back-propagation neural ... 海浪直接影响海上活动和航行安全,同时也蕴藏着巨大的可再生能源,对海浪核心参数之一波高预测至关重要。基于2015年7月~2022年6月山东小麦岛(36°N,120.6°E)站点实测的波高数据,利用反向传播神经网络(back-propagation neural network,BPNN)、长短记忆网络(long short-term memory,LSTM)和支持向量机回归(support vector regression,SVR)三种机器学习模型对波高进行预测,并分析了瑞利参数的引入对预测结果的影响。结果显示,模型输入项引入瑞利参数后,对1 h和6 h波高预测提升效果有限,预测值与测试集的相关性提升不超过0.02,均方根误差的降低不超过0.01 m;在12h和24h的预测中,BPNN和LSTM模型预测结果相关性提升0.03~0.07,均方根误差降低0.02~0.03m,而SVR模型预测结果变化不显著。说明瑞利参数有助改善BPNN和LSTM模型中长期海浪预报。此外,特征扰动方法(机器学习中特征重要性的计算方法之一)验证了瑞利参数在波高预测中的重要性,瑞利参数的引入为波高的机器学习预测提供了新思路。 展开更多
关键词 波高 反向传播神经网络 长短记忆网络 支持向量机 机器学习 瑞利参数
下载PDF
基于深度残差LSTM的盾构姿态预测
16
作者 周康敏 程康 +3 位作者 曾少翔 丁智 余颂 冯治国 《隧道建设(中英文)》 CSCD 北大核心 2024年第8期1643-1651,共9页
深度学习模型相比于常规机器学习模型能够更准确地预测盾构姿态,但在增加网络层数以提升性能时,常遇到网络退化问题。为解决此问题,提出基于深度残差LSTM的盾构姿态预测方法。该方法将残差连接融入长短期记忆(LSTM)神经网络,提升深层网... 深度学习模型相比于常规机器学习模型能够更准确地预测盾构姿态,但在增加网络层数以提升性能时,常遇到网络退化问题。为解决此问题,提出基于深度残差LSTM的盾构姿态预测方法。该方法将残差连接融入长短期记忆(LSTM)神经网络,提升深层网络训练的可行性,并可以有效学习盾构时序数据中的长期依赖关系,同时利用贝叶斯优化算法进行超参数调优。依托浙江某盾构工程数据集对所提方法进行验证,以盾尾水平偏移预测为例,深度残差LSTM模型预测的决定系数(R^(2))达到了0.90,平均绝对误差(MAE)为0.76 mm,相较于LSTM模型(R^(2)为0.64,MAE为1.08 mm)和人工神经网络模型(R^(2)为0.68,MAE为1.93 mm),深度残差LSTM模型可以更准确地预测盾构姿态。此外,与LSTM模型相比,深度残差LSTM模型能有效利用更多的网络层(从5层增加到8层),证明了残差连接在防止网络退化、加强盾构数据特征学习能力方面的显著作用。 展开更多
关键词 盾构隧道 LSTM 残差连接 机器学习 贝叶斯优化 姿态预测
下载PDF
基于深度学习和广义S变换协同的风速预测
17
作者 朱哲萱 马汝为 +1 位作者 曹黎媛 李春祥 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期664-671,共8页
针对实测风速的非平稳性特点,提出一种基于深度学习和时频分析的风速混合预测方法。首先,采用经验模态分解(EMD)将风速分解为若干子层,由此得到趋势分量和脉动分量以降低风速的非线性。根据2个分量的时频特性,采用长短时记忆(LSTM)处理... 针对实测风速的非平稳性特点,提出一种基于深度学习和时频分析的风速混合预测方法。首先,采用经验模态分解(EMD)将风速分解为若干子层,由此得到趋势分量和脉动分量以降低风速的非线性。根据2个分量的时频特性,采用长短时记忆(LSTM)处理趋势分量,极限学习机(ELM)处理脉动分量。其次,引入广义S变换(GST)来获得预测过程中的时频特性。同时,采用改进的灰狼算法(IGWO)对GST、LSTM和ELM的参数进行优化。最后,以内蒙古某风场实测风速对所提模型进行验证,结果表明该模型具有较高的精度。 展开更多
关键词 风电场 风速 预测 长短时记忆 极限学习机 广义S变换
下载PDF
SQL-to-text模型的组合泛化能力评估方法
18
作者 陈琳 范元凯 +3 位作者 何震瀛 刘晓清 杨阳 汤路民 《计算机工程》 CAS CSCD 北大核心 2024年第3期326-335,共10页
数据库的结构化查询语言(SQL)到自然语言的翻译(SQL-to-text)能提高关系数据库的易用性。近年来该领域主要使用机器学习的方法进行研究并已取得一定进展,然而现有翻译模型的能力仍不足以投入实际应用。由于组合泛化能力是SQL-to-text模... 数据库的结构化查询语言(SQL)到自然语言的翻译(SQL-to-text)能提高关系数据库的易用性。近年来该领域主要使用机器学习的方法进行研究并已取得一定进展,然而现有翻译模型的能力仍不足以投入实际应用。由于组合泛化能力是SQL-to-text模型在实际应用中提升翻译效果的必要能力,且目前缺少对此类模型组合泛化能力的研究,因此提出一种SQL-to-text模型的组合泛化能力评估方法。基于现有的SQL-to-text数据集生成大量SQL和对应的自然语言翻译(SQL-自然语言对),并按SQL-自然语言对所含SQL子句的个数将其划分为训练数据与测试数据,使测试数据中的SQL子句皆以不同的组合方式在训练数据中出现,从而得到可评估模型组合泛化能力的新数据集。评估结果表明,该方法对查询知识的使用程度较高,划分数据的方式更加合理,所得数据集符合评估组合泛化能力的需求且贴近模型的实际应用场景,受到原始数据集的限制程度更低,并证实现有模型的组合泛化能力仍需提升,其中针对SQL-to-text任务设计的关系感知图转换器模型组合泛化能力最弱,表明原有的SQL-to-text数据集对组合泛化能力的考察存在欠缺。 展开更多
关键词 结构化查询语言 组合泛化 机器翻译 数据库 长短期记忆模型
下载PDF
基于深度学习与改进负荷行为关联图的农业用户非侵入式负荷分解方法
19
作者 高波 董增波 +4 位作者 李飞 史轮 陶鹏 孙毅 陈明昊 《电工电能新技术》 CSCD 北大核心 2024年第1期72-84,共13页
目前负荷分解模型大都面向城市用户,忽视了农业用电场景下的负荷关联特性,导致现有负荷分解模型在该场景下的分解效果较差,本文提出了一种基于深度学习与改进负荷行为关联图的农业用户非侵入式负荷分解方法。该方法首先采用One-hot编码... 目前负荷分解模型大都面向城市用户,忽视了农业用电场景下的负荷关联特性,导致现有负荷分解模型在该场景下的分解效果较差,本文提出了一种基于深度学习与改进负荷行为关联图的农业用户非侵入式负荷分解方法。该方法首先采用One-hot编码构建包含离散和连续影响因素的负荷特征矩阵;其次,运用负荷行为关联图来表征用户不同负荷设备间关联关系,并采用图注意力网络对负荷间相关性进行权重优化;最后,构建基于卷积神经网络和长短时记忆网络的农业用户负荷分解模型并进行训练部署。仿真结果显示,本文所提出的基于深度学习与改进负荷行为关联图的农业用户非侵入式负荷分解方法相比现有方法分别获得4.34%和2.02%的负荷分解精度提升,并更加适用于农业用电场景。 展开更多
关键词 机器学习 负荷分解 长短时记忆网络 图注意力网络 特征提取
下载PDF
基于注意力机制和LSTM-LightGBM的特高压直流输电线路可听噪声无效数据清洗方法
20
作者 吴海荣 李振华 +1 位作者 程紫熠 张传计 《南方电网技术》 CSCD 北大核心 2024年第8期115-123,140,共10页
特高压直流输电线路可听噪声试验过程中,外界环境的突发性干扰会使实验数据中掺杂较多的无效数据,严重影响后续的数据分析。提出了一种基于注意力机制(attention mechanism,AM)和长短时记忆网络-轻量级梯度提升机(long short-term memor... 特高压直流输电线路可听噪声试验过程中,外界环境的突发性干扰会使实验数据中掺杂较多的无效数据,严重影响后续的数据分析。提出了一种基于注意力机制(attention mechanism,AM)和长短时记忆网络-轻量级梯度提升机(long short-term memory network-light gradient boosting machine,LSTM-LightGBM)的输电线路可听噪声无效数据清洗方法。首先,针对可听噪声数据的非线性、高维时序冗余特征等特点,以LSTM神经网络为基础进行特征提取;同时,引入特征维度注意力机制,自适应地分配权重来刻画关键特征信息的表达能力;进而,利用LightGBM对提取到的特征进行分类,检测出无效数据;然后,以某特高压直流输电线路实测可听噪声数据试验分析,结果表明该方法的检测精准率为95.55%,召回率为97.73%,F1分数为0.9663,均优于对比实验模型;最后,将无效数据删除并使用均值插补法填补,无效数据清洗后数据的50%值和95%值基本不变,仅降低无效数据的最大值和5%值。该算法对提高输电线路可听噪声数据的可靠性具有一定参考意义。 展开更多
关键词 输电线路 可听噪声 长短时记忆网络 注意力机制 轻量级梯度提升机 无效数据
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部