为了提高光伏发电功率预测精度,提出了一种基于长短期时序数据融合的Transformer生成式预测模型:LSTformer,能准确有效地预测光伏发电功率。LSTformer创新性地提出了时序分析模块(time series analysis,TSA)、时序特征融合模块(time ser...为了提高光伏发电功率预测精度,提出了一种基于长短期时序数据融合的Transformer生成式预测模型:LSTformer,能准确有效地预测光伏发电功率。LSTformer创新性地提出了时序分析模块(time series analysis,TSA)、时序特征融合模块(time series feature fusion,TSFF)和多周期嵌入模块(cycleEmbed),利用数据融合解决难以提取多时间尺度时序特征问题。设计时间卷积前馈(time convolution feedforward,TCNforward)单元,在编解码的过程中进一步提取时序特征。利用某光伏电站实际历史发电数据,通过实验验证LSTformer模型在光伏发电功率预测领域得到最低的均方误差(mean squared error,MSE)、平均绝对误差(mean absolute error,MAE),并通过消融实验验证了各模块的有效性。展开更多
基金This study was jointly funded by the National Key R&D Program of China[grant number 2022YFC3004103]the National Natural Foundation of China[grant number 42275003]+2 种基金the Beijing Science and Technology Program[grant number Z221100005222012]the Beijing Meteorological Service Science and Technology Program[grant number BMBKJ202302004]the China Meteorological Administration Youth Innovation Team[grant number CMA2023QN10].