Mg-Y-Zn alloys with long period stacking ordered(LPSO)structure have received much attention recently and exhibit great potential in applications such as automotive,aerospace and in bio-medical fields.This paper aimed...Mg-Y-Zn alloys with long period stacking ordered(LPSO)structure have received much attention recently and exhibit great potential in applications such as automotive,aerospace and in bio-medical fields.This paper aimed to investigate the effect of different phase constitution of LPSO structures on corrosion rate of bio-medical Mg-Y-Zn alloys.The results showed that as-cast Mg98.5Y1Zn0.5 alloys containing only 18R structure exhibited the highest corrosion resistance with the corrosion rate of 2.78 mm/year.The precipitation of 14H lamellas within a-Mg grains during solid solution treatment introduced the crystallographic orientation corrosion by accelerating micro-galvanic corrosion.The increase of 18R/14H interfaces deteriorated the corrosion resistance,and the grain boundaries also suffered from severe electrochemical dissolution.This work suggested that Mg-Y-Zn alloys with single LPSO structure(either 18R or 14H)exhibited better corrosion resistance than alloys with co-existence 18R and I4H LPSO structures.展开更多
Corrosion is one of the most drawbacks which restricts the wide applications of Mg alloys.In the last decade,the corrosion behaviors of Mg alloys with stacking fault(SF)and/or long period stacking ordered(LPSO)structu...Corrosion is one of the most drawbacks which restricts the wide applications of Mg alloys.In the last decade,the corrosion behaviors of Mg alloys with stacking fault(SF)and/or long period stacking ordered(LPSO)structures have obtained increasing attention.However,the corrosion mechanism of the SF–or LPSO–containing Mg alloys has not been well illustrated and even reverse results have been reported.In this paper,we have reviewed recent reports on corrosion behaviors of SF–or LPSO–containing Mg alloys to better clarify and understand the significance and mechanism.Moreover,some deficiencies are presented and advises are proposed for the development of corrosion resistant Mg alloys with SF or LPSO structures.展开更多
The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing...The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing the formation of LPSO phases, including alloying ele-ments, preparation methods, and heat treatments. Furthermore, process control in structure types, formation and transformation behavior, strengthening and toughening mechanisms of the LPSO phase were discussed. Finally, the current problems and development trends of high-strength Mg-Zn-RE alloys were also put forward.展开更多
The microstructure evolution of Mg100-2xYxZnx (x=2, 2.5, 3, 3.5) alloys was investigated. Results show that the Mg100-2xYxZnx alloys are composed of a-Mg, long period stacking ordered (LPSO) phase and eutectic str...The microstructure evolution of Mg100-2xYxZnx (x=2, 2.5, 3, 3.5) alloys was investigated. Results show that the Mg100-2xYxZnx alloys are composed of a-Mg, long period stacking ordered (LPSO) phase and eutectic structure phase (W phase), and the Mg95Y2.5Zn2.5 alloy has the best comprehensive mechanical properties. Subsequently, the microstructure evolution of the optimized alloy Mg95Y2.5Zn2.5 during solidification and heat treatment processes was analyzed and discussed by means of OM, SEM, TEM, XRD and DTA. After heat treatment, the lamellar phase 14H-LPSO precipitated in a-Mg and W phase transforms into particle phase (MgyZn2). Due to the compound reinforcement effect of the particle phase and LPSO phase (18R+14H), the mechanical properties of the alloy are enhanced. The tensile strength and elongation of the Mg95Y2.5Zn2.5 alloy is improved by 9.1% and 31.3% to 215 MPa and 10.5%, respectively, after solid-solution treatment.展开更多
Alloys with composition of Mg_(96-x)Gd_3Zn_1Li_x(at.%)(x=0, 2, 4, and 6) were prepared by conventional casting. The microstructures of these alloys under as-cast and solid-solution conditions have been observed, and t...Alloys with composition of Mg_(96-x)Gd_3Zn_1Li_x(at.%)(x=0, 2, 4, and 6) were prepared by conventional casting. The microstructures of these alloys under as-cast and solid-solution conditions have been observed, and the mechanical properties were investigated. The results showed that Li is an effective element to refine the grains and break the eutectic networks in as-cast MgGd_3Zn_1 alloy. During solid solution treatment, these broken eutectic networks are spheroidized and highly dispersed. In addition, plentiful lamellar long period stacking ordered(LPSO) phases are precipitated in an α-Mg matrix when the Li addition is not more than 4%. Solid-solution treated Mg_(92)Gd_3Zn_1Li_4 alloy exhibits an optimal ultimate tensile strength(UTS) of 226 MPa and elongation of 5.8%. The strength of MgGd_3Zn_1 alloy is improved significantly, meanwhile, the toughness is apparently increased.展开更多
The microstructure and damping capacities of MgZnxYi.33x(x=l-4at.%)alloys were discussed and researched.The main phase composition of the alloys consists of a_Mg and long-period stacking ordered(LPSO)phase.Due to incr...The microstructure and damping capacities of MgZnxYi.33x(x=l-4at.%)alloys were discussed and researched.The main phase composition of the alloys consists of a_Mg and long-period stacking ordered(LPSO)phase.Due to increasedLPSO phase,grain size was refined.LPSO phase was advantageous to the damping properties of the Mg-Zn-Y alloys.Mg-7%Zn-12.8%Y has the highest damping capacity up to0.04.Due to stacking fault probability,the LPSO phase in the Mg-Zn-Yalloys could be new damping source to dissipate energy so as to contribute to the improvement of damping capacities.展开更多
We have systematically investigated the microstructures of as-cast Mg_(97.49)Ho_(1.99)Cu_(0.43)Zr_(0.09)alloy by atomic resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM), r...We have systematically investigated the microstructures of as-cast Mg_(97.49)Ho_(1.99)Cu_(0.43)Zr_(0.09)alloy by atomic resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM), revealing the coexistence of 18R, 14H and 24R long period stacking/order(LPSO) phases with fully coherent interfaces along step-like composition gradient in a blocky intermetallic compound distributed at grain boundary. The short-range order(SRO) L1_(2)-type Cu_(6)Ho_(8)clusters embedded across AB’C’A-stacking fault layers are directly revealed at atomic scale. Importantly, the order degree of SRO clusters in the present dilute alloy is significant lower than previous 6M and 7M in-plane order reported in ternary Mg-TM(transition metal)-RE(rare earth) alloys, which can be well matched by 9M in-plane order. This directly demonstrates that SRO in-plane L1_(2)-type clusters can be expanded into more dilute composition regions bounded along the definite TM/RE ratio of 3/4. In addition, the estimated chemical compositions of solute enriched stacking fault(SESF) in all LPSO variants are almost identical with the ideal SESF composition of 9M in-plane order, regardless of the type of LPSO phases. The results further support the viewpoint that robust L1_(2)-type TM_(6)RE_(8)clusters play an important role in governing LPSO phase formation.展开更多
Casting magnesium alloys hold the greatest share of magnesium application products due to their short processing period, low cost and near net shape forming. Compared with conventional commercial magnesium alloys or o...Casting magnesium alloys hold the greatest share of magnesium application products due to their short processing period, low cost and near net shape forming. Compared with conventional commercial magnesium alloys or other Mg–RE-based alloys, the novel Mg–RE–TM cast alloys with long period stacking ordered(LPSO) phases usually possess a higher strength and are promising candidates for aluminum alloy applications. Up to now, two ways: alloying design and casting process control(including subsequent heat treatments), have been predominantly employed to further improve the mechanical properties of these alloys. Alloying with other elements or ceramic particles could alter the solidifi cation pattern of alloys, change the morphology of LPSO phases and refi ne the microstructures. Diff erent casting techniques(conventional casting, rapidly solidifi cation, directional solidifi cation, etc.) introduce various microstructure characteristics, such as dendritic structure, nanocrystalline, metastable phase, anisotropy. Further heat treatments could activate the transformation of various LPSO structures and precipitation of diverse precipitates. All these evolutions exert great impacts on the mechanical properties of the LPSO-containing alloys. However, the underlying mechanisms still remain a subject of debate. Therefore, this review mainly provides the state of the art of the casting magnesium alloys research and the accompanying challenges and summarizes some topics that merit future investigation for developing high-performance Mg–RE–TM cast alloys.展开更多
The microstructure of the precipitated phases of Mg95.sGd3Zn1Zro.2 alloys with long-period stacking ordered structure before and after heat treatment is discussed. The corrosion properties of the as-cast (F), solid-...The microstructure of the precipitated phases of Mg95.sGd3Zn1Zro.2 alloys with long-period stacking ordered structure before and after heat treatment is discussed. The corrosion properties of the as-cast (F), solid-solution (T4) and aging-treated (T6) alloys in 1% NaC1 solution are studied. The hydrogen evolution and electrochemical measurements display that the as-cast Mg95.sGd3Zn1Zro.2 alloy with the continuous network eutectic phase exhibits the greatest corrosion resistance, while T6 sample with some needle-like phases and the particle phases is the worst among the three alloys. It is proposed to be mainly related to the amount, composition, microstructure and distribution of the precipitated phases.展开更多
Phase compositions and microstructure evolutions of three Mg-Y-Zn cast alloys during isothermal annealing at 773 K have been systematically investigated to clarify the formation behavior of 14 H long period stacking o...Phase compositions and microstructure evolutions of three Mg-Y-Zn cast alloys during isothermal annealing at 773 K have been systematically investigated to clarify the formation behavior of 14 H long period stacking ordered(LPSO) structure from α-Mg grains.The annealed microstructure characteristics indicate that the 18 R phase is thermal stable in Mg86Y8Zn6 alloy where 18 R serves as matrix,and 14 H lamellar phase only forms within tiny α-Mg slices(less than 1% for volume fraction).The α-Mg grains in Mg88Y8Zn4 and Mg89Y8Zn3 alloys exhibit cellular shape,and 14 H phase forms and develops into lamellar shape in these cellular grains after annealing.The results suggest that the presence of α-Mg grains is a requirement for the generation of 14 H phase.The nucleation and growth rates of 14 H lamellas are accelerated in α-Mg grains with higher concentrations of stacking faults and solute atoms.Moreover,the 14 H lamellas are parallel to adjacent 18 R plates in Mg86Y8Zn6 alloy,but the 14 H phase precipitated in cellularα-Mg grains of Mg88Y8Zn4 and Mg89Y8Zn3 alloys exhibits random orientation relationship with surrounding 18 R phase,indicating that the orientation relationship between 14 H and 18 R phases depends on the relationship between α-Mg grains and 18 R phase.展开更多
Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electr...Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electrochemical measurements in order to determine the corrosion rate and mechanism of the alloys. The results showed that the volume fraction of Mg(12)YZn phase increased and the shape of the Mg(12)YZn phase changed from discontinuous to continuous net-like with increasing Zn and Y content. The corrosion rate of the alloys greatly depended on the distribution and volume fraction of the Mg(12)YZn phase. Corrosion products appeared at the junction of Mg phase and Mg(12)YZn phase, indicating that the Mg(12)YZn phase accelerated galvanic corrosion of Mg matrix. Mg(97)Zn1Y2 alloy shows the lowest corrosion rate due to the continuous distribution of Mg(12)YZn phase.展开更多
Both the solid solution and precipitation are mainly strengthening mechanism for the magnesium-based alloys. A great number of alloying elements can be dissolved into the Mg matrix to form the solutes and precipitates...Both the solid solution and precipitation are mainly strengthening mechanism for the magnesium-based alloys. A great number of alloying elements can be dissolved into the Mg matrix to form the solutes and precipitates.Moreover, the type of precipitates varies with different alloying elements and heat treatments, which makes it quite difficult to understand the formation mechanism of the precipitates in Mg-based alloys in depth. Thus, it is very hard to give a systematical regularity in precipitation process for the Mg-based alloys. This review is mainly focused on the formation and microstructural evolution of the precipitates, as a hot topic for the past few years, including Guinier-Preston Zones, quasicrystals and long-period stacking ordered phases formed in a number of Mg-TM-RE alloy systems, where TM = Al, Zn, Zr and RE = Y,Gd, Hd, Ce and La.展开更多
The mechanical properties of two main precipitating phases(LPSO and MgRE)and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method.A new is suggested for characterizing the elastic-plastic behavi...The mechanical properties of two main precipitating phases(LPSO and MgRE)and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method.A new is suggested for characterizing the elastic-plastic behavior,fracture toughness and strain rate sensitivity(SRS)of materials within micro/nanoscale.Firstly,a nanomechanical model was developed for extracting hardness(H),young’s modulus(E)and yield stress(σY)from the characteristic load points which were subsequently analyzed by atomic force microscope(AFM)images.The elasticity data and AFM data were then utilized for determination of plastic deformation in constituent phases.The displacement of the indentation gets the highest value for Mg matrix and between precipitates,depth is more in LPSO rather than that of MgRE.The serrated flow or the behavior of shear bands may originate from the side effect of the interface region in Mg alloys with precipitates.It can be deduced that the KIC produced by both L method and energy-based calculation are both reliable for KIC approximation.The maximum load in simulation withμ=0.2 friction is marginally lesser than that of the frictionless(μ=0)one while elastic recovery of indentation withμ=0.2 is higher to some extent.展开更多
A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribologica...A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30-300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed ofα-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, andβ-[(Mg,Zn)3Gd] phase. However, most of theβ-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy.展开更多
Mg-Y-Zn-Al alloys processed by rapidly solidified ribbon consolidation(RSRC)technique exhibit an exceptional mechanical performance indicating promising application potential.This material has a bimodal microstructure...Mg-Y-Zn-Al alloys processed by rapidly solidified ribbon consolidation(RSRC)technique exhibit an exceptional mechanical performance indicating promising application potential.This material has a bimodal microstructure consisting of fine recrystallized and coarse non-recrystallized grains with solute-rich stacking faults forming cluster arranged layers(CALs)and nanoplates(CANaPs),or complete long period stacking ordered(LPSO)phase.In order to reveal the deformation mechanisms,in-situ synchrotron X-ray diffraction line profile analysis was employed for a detailed study of the dislocation arrangement created during tension in Mg-0.9%Zn-2.05%Y-0.15%Al(at%)alloy.For uncovering the effect of the initial microstructure on the mechanical performance,additional samples were obtained by annealing of the as-consolidated specimen at 300 and 400℃ for 2 h.The heat treatment at 300℃ had no significant effect on the initial microstructure,its evolution during tension and,thus,the overall deformation behavior under tensile loading.On the other hand,annealing at 400℃ resulted in a significant increase of the recrystallized grains fraction and a decrease of the dislocation density,leading to only minor degradation of the mechanical strength.The maximum dislocation density at the failure of the samples corresponding to the plastic strain of 10-25% was estimated to be about 16-20×10^(14)m^(-2).The diffraction profile analysis indicated that most dislocations formed during tension were of non-basal and pyramidal types,what was also in agreement with the Schmid factor values revealed independently from orientation maps.It was also shown that the dislocation-induced Taylor hardening was much lower below the plastic strain of 3% than above this value,which was explained by a model of the interaction between prismatic dislocations and CANaPs/LPSO plates.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51774109 and 51979099)the Fundamental Research Funds for the Central Universities(Grant No.2018B48414 and 2018B690X14)+3 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0570)The Key Research and Development Project of Jiangsu Province of China(Grant No.BE2017148)Postgraduate Education Reform Project of Jiangsu Province(JGLX19_027)Natural Science Foundation of China(Grant No.51979099).
文摘Mg-Y-Zn alloys with long period stacking ordered(LPSO)structure have received much attention recently and exhibit great potential in applications such as automotive,aerospace and in bio-medical fields.This paper aimed to investigate the effect of different phase constitution of LPSO structures on corrosion rate of bio-medical Mg-Y-Zn alloys.The results showed that as-cast Mg98.5Y1Zn0.5 alloys containing only 18R structure exhibited the highest corrosion resistance with the corrosion rate of 2.78 mm/year.The precipitation of 14H lamellas within a-Mg grains during solid solution treatment introduced the crystallographic orientation corrosion by accelerating micro-galvanic corrosion.The increase of 18R/14H interfaces deteriorated the corrosion resistance,and the grain boundaries also suffered from severe electrochemical dissolution.This work suggested that Mg-Y-Zn alloys with single LPSO structure(either 18R or 14H)exhibited better corrosion resistance than alloys with co-existence 18R and I4H LPSO structures.
基金This project was supported by the Natural Science Foundation of Jiangsu Province for Outstanding Youth(BK20160081)the Natural Science Foundation of Jiangsu Province(BK20181020)+2 种基金the Natural Science Foundation of Higher Education Institutions of Jiangsu Province–Key Project(18KJA430008)the“333 Project”of Jiangsu Province(BRA2018338)the Practical Innovative Project for Postgraduates of Jiangsu Province(SJCX19_0493).
文摘Corrosion is one of the most drawbacks which restricts the wide applications of Mg alloys.In the last decade,the corrosion behaviors of Mg alloys with stacking fault(SF)and/or long period stacking ordered(LPSO)structures have obtained increasing attention.However,the corrosion mechanism of the SF–or LPSO–containing Mg alloys has not been well illustrated and even reverse results have been reported.In this paper,we have reviewed recent reports on corrosion behaviors of SF–or LPSO–containing Mg alloys to better clarify and understand the significance and mechanism.Moreover,some deficiencies are presented and advises are proposed for the development of corrosion resistant Mg alloys with SF or LPSO structures.
基金supported by the Opening Project of Jiangsu Key Laboratory of Advanced Metallic Materials (No. AMM201007)the Natural Science Foundation of Jiangsu Province of China (No. BK2010521)
文摘The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing the formation of LPSO phases, including alloying ele-ments, preparation methods, and heat treatments. Furthermore, process control in structure types, formation and transformation behavior, strengthening and toughening mechanisms of the LPSO phase were discussed. Finally, the current problems and development trends of high-strength Mg-Zn-RE alloys were also put forward.
基金financially supported by the National Natural Science Foundation of China(Nos.50571073,51574175 and 51474153)Ph.D.Programs Foundation of Ministry of Education of China(20111402110004)Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)
文摘The microstructure evolution of Mg100-2xYxZnx (x=2, 2.5, 3, 3.5) alloys was investigated. Results show that the Mg100-2xYxZnx alloys are composed of a-Mg, long period stacking ordered (LPSO) phase and eutectic structure phase (W phase), and the Mg95Y2.5Zn2.5 alloy has the best comprehensive mechanical properties. Subsequently, the microstructure evolution of the optimized alloy Mg95Y2.5Zn2.5 during solidification and heat treatment processes was analyzed and discussed by means of OM, SEM, TEM, XRD and DTA. After heat treatment, the lamellar phase 14H-LPSO precipitated in a-Mg and W phase transforms into particle phase (MgyZn2). Due to the compound reinforcement effect of the particle phase and LPSO phase (18R+14H), the mechanical properties of the alloy are enhanced. The tensile strength and elongation of the Mg95Y2.5Zn2.5 alloy is improved by 9.1% and 31.3% to 215 MPa and 10.5%, respectively, after solid-solution treatment.
基金supported by the National Natural Science Foundation of China(Nos.50571073,51574175 and 51474153)the Ph. D. Programs Foundation of Ministry of Education of China(20111402110004)the Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)
文摘Alloys with composition of Mg_(96-x)Gd_3Zn_1Li_x(at.%)(x=0, 2, 4, and 6) were prepared by conventional casting. The microstructures of these alloys under as-cast and solid-solution conditions have been observed, and the mechanical properties were investigated. The results showed that Li is an effective element to refine the grains and break the eutectic networks in as-cast MgGd_3Zn_1 alloy. During solid solution treatment, these broken eutectic networks are spheroidized and highly dispersed. In addition, plentiful lamellar long period stacking ordered(LPSO) phases are precipitated in an α-Mg matrix when the Li addition is not more than 4%. Solid-solution treated Mg_(92)Gd_3Zn_1Li_4 alloy exhibits an optimal ultimate tensile strength(UTS) of 226 MPa and elongation of 5.8%. The strength of MgGd_3Zn_1 alloy is improved significantly, meanwhile, the toughness is apparently increased.
基金National Natural Science Foundation of China(Nos.U1610123,51674226,51574207,51574206,51274175)International Cooperation project of the Ministry of Science and Technology of China(No.2014DFA50320)+4 种基金The Science and Technology Major Project of Shanxi Province(No.MC2016-06)International Science and Technology Cooperation Project of Shanxi Province(No.2015081041)Research Project Supported by Shanxi Scholarship Council of China(No.2016-Key 2)Transformation of Scientific and Technological Achievements Special Guide Project of Shanxi Province(No.201604D131029)Shanxi Province Science Foundation for Youths(No.201601D021062)
文摘The microstructure and damping capacities of MgZnxYi.33x(x=l-4at.%)alloys were discussed and researched.The main phase composition of the alloys consists of a_Mg and long-period stacking ordered(LPSO)phase.Due to increasedLPSO phase,grain size was refined.LPSO phase was advantageous to the damping properties of the Mg-Zn-Y alloys.Mg-7%Zn-12.8%Y has the highest damping capacity up to0.04.Due to stacking fault probability,the LPSO phase in the Mg-Zn-Yalloys could be new damping source to dissipate energy so as to contribute to the improvement of damping capacities.
基金supported by JSPS KAKENHI for Scientific Research on Innovative Areas “Materials Science of a Millefeuille Structure (Grant Nos. JP18H05475, JP18H05479)”“Nanotechnology Platform” of the MEXT, Japan+1 种基金supported by Grant-in-Aid for JSPS Fellows (JP19F19775)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (RERU2020012)。
文摘We have systematically investigated the microstructures of as-cast Mg_(97.49)Ho_(1.99)Cu_(0.43)Zr_(0.09)alloy by atomic resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM), revealing the coexistence of 18R, 14H and 24R long period stacking/order(LPSO) phases with fully coherent interfaces along step-like composition gradient in a blocky intermetallic compound distributed at grain boundary. The short-range order(SRO) L1_(2)-type Cu_(6)Ho_(8)clusters embedded across AB’C’A-stacking fault layers are directly revealed at atomic scale. Importantly, the order degree of SRO clusters in the present dilute alloy is significant lower than previous 6M and 7M in-plane order reported in ternary Mg-TM(transition metal)-RE(rare earth) alloys, which can be well matched by 9M in-plane order. This directly demonstrates that SRO in-plane L1_(2)-type clusters can be expanded into more dilute composition regions bounded along the definite TM/RE ratio of 3/4. In addition, the estimated chemical compositions of solute enriched stacking fault(SESF) in all LPSO variants are almost identical with the ideal SESF composition of 9M in-plane order, regardless of the type of LPSO phases. The results further support the viewpoint that robust L1_(2)-type TM_(6)RE_(8)clusters play an important role in governing LPSO phase formation.
基金supports of the Natural Science Foundation of Jiangsu Province of China (No. BK20160869)the Fundamental Research Funds for the Central Universities (No. 2018B16614)the National Natural Science Foundation of China (No. 51774109)
文摘Casting magnesium alloys hold the greatest share of magnesium application products due to their short processing period, low cost and near net shape forming. Compared with conventional commercial magnesium alloys or other Mg–RE-based alloys, the novel Mg–RE–TM cast alloys with long period stacking ordered(LPSO) phases usually possess a higher strength and are promising candidates for aluminum alloy applications. Up to now, two ways: alloying design and casting process control(including subsequent heat treatments), have been predominantly employed to further improve the mechanical properties of these alloys. Alloying with other elements or ceramic particles could alter the solidifi cation pattern of alloys, change the morphology of LPSO phases and refi ne the microstructures. Diff erent casting techniques(conventional casting, rapidly solidifi cation, directional solidifi cation, etc.) introduce various microstructure characteristics, such as dendritic structure, nanocrystalline, metastable phase, anisotropy. Further heat treatments could activate the transformation of various LPSO structures and precipitation of diverse precipitates. All these evolutions exert great impacts on the mechanical properties of the LPSO-containing alloys. However, the underlying mechanisms still remain a subject of debate. Therefore, this review mainly provides the state of the art of the casting magnesium alloys research and the accompanying challenges and summarizes some topics that merit future investigation for developing high-performance Mg–RE–TM cast alloys.
基金supported by the National Natural Science Foundation of China(Nos.51574175 and 51474153)the Ph.D.Programs Foundation of Ministry of Education of China(No. 20111402110004)the Natural Science Foundation of Shanxi Province(Nos.2009011028-3 and 2012011022-1)
文摘The microstructure of the precipitated phases of Mg95.sGd3Zn1Zro.2 alloys with long-period stacking ordered structure before and after heat treatment is discussed. The corrosion properties of the as-cast (F), solid-solution (T4) and aging-treated (T6) alloys in 1% NaC1 solution are studied. The hydrogen evolution and electrochemical measurements display that the as-cast Mg95.sGd3Zn1Zro.2 alloy with the continuous network eutectic phase exhibits the greatest corrosion resistance, while T6 sample with some needle-like phases and the particle phases is the worst among the three alloys. It is proposed to be mainly related to the amount, composition, microstructure and distribution of the precipitated phases.
基金supported by the Natural Science Foundation of Jiangsu Province of China(No.BK2010392)the Fundamental Research Funds for the Central Universities(No.2015B01314)
文摘Phase compositions and microstructure evolutions of three Mg-Y-Zn cast alloys during isothermal annealing at 773 K have been systematically investigated to clarify the formation behavior of 14 H long period stacking ordered(LPSO) structure from α-Mg grains.The annealed microstructure characteristics indicate that the 18 R phase is thermal stable in Mg86Y8Zn6 alloy where 18 R serves as matrix,and 14 H lamellar phase only forms within tiny α-Mg slices(less than 1% for volume fraction).The α-Mg grains in Mg88Y8Zn4 and Mg89Y8Zn3 alloys exhibit cellular shape,and 14 H phase forms and develops into lamellar shape in these cellular grains after annealing.The results suggest that the presence of α-Mg grains is a requirement for the generation of 14 H phase.The nucleation and growth rates of 14 H lamellas are accelerated in α-Mg grains with higher concentrations of stacking faults and solute atoms.Moreover,the 14 H lamellas are parallel to adjacent 18 R plates in Mg86Y8Zn6 alloy,but the 14 H phase precipitated in cellularα-Mg grains of Mg88Y8Zn4 and Mg89Y8Zn3 alloys exhibits random orientation relationship with surrounding 18 R phase,indicating that the orientation relationship between 14 H and 18 R phases depends on the relationship between α-Mg grains and 18 R phase.
基金support of the National Natural Science Foundation of China (No.50571073)the Ph.D. Programs Foundation of Ministry of Education of China (No. 20111402110004)the Natural Science Foundation of Shanxi Province, China (No.2009011028-3)
文摘Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electrochemical measurements in order to determine the corrosion rate and mechanism of the alloys. The results showed that the volume fraction of Mg(12)YZn phase increased and the shape of the Mg(12)YZn phase changed from discontinuous to continuous net-like with increasing Zn and Y content. The corrosion rate of the alloys greatly depended on the distribution and volume fraction of the Mg(12)YZn phase. Corrosion products appeared at the junction of Mg phase and Mg(12)YZn phase, indicating that the Mg(12)YZn phase accelerated galvanic corrosion of Mg matrix. Mg(97)Zn1Y2 alloy shows the lowest corrosion rate due to the continuous distribution of Mg(12)YZn phase.
基金supported by National Natural Science Fundation of China (Nos. 51171192 and51271183)National Basic Research Program of China(No. 2013CB632205)Innovation Fund of Institute of Metal Research (IMR), Chinese Academy of Sciences(CAS)
文摘Both the solid solution and precipitation are mainly strengthening mechanism for the magnesium-based alloys. A great number of alloying elements can be dissolved into the Mg matrix to form the solutes and precipitates.Moreover, the type of precipitates varies with different alloying elements and heat treatments, which makes it quite difficult to understand the formation mechanism of the precipitates in Mg-based alloys in depth. Thus, it is very hard to give a systematical regularity in precipitation process for the Mg-based alloys. This review is mainly focused on the formation and microstructural evolution of the precipitates, as a hot topic for the past few years, including Guinier-Preston Zones, quasicrystals and long-period stacking ordered phases formed in a number of Mg-TM-RE alloy systems, where TM = Al, Zn, Zr and RE = Y,Gd, Hd, Ce and La.
文摘The mechanical properties of two main precipitating phases(LPSO and MgRE)and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method.A new is suggested for characterizing the elastic-plastic behavior,fracture toughness and strain rate sensitivity(SRS)of materials within micro/nanoscale.Firstly,a nanomechanical model was developed for extracting hardness(H),young’s modulus(E)and yield stress(σY)from the characteristic load points which were subsequently analyzed by atomic force microscope(AFM)images.The elasticity data and AFM data were then utilized for determination of plastic deformation in constituent phases.The displacement of the indentation gets the highest value for Mg matrix and between precipitates,depth is more in LPSO rather than that of MgRE.The serrated flow or the behavior of shear bands may originate from the side effect of the interface region in Mg alloys with precipitates.It can be deduced that the KIC produced by both L method and energy-based calculation are both reliable for KIC approximation.The maximum load in simulation withμ=0.2 friction is marginally lesser than that of the frictionless(μ=0)one while elastic recovery of indentation withμ=0.2 is higher to some extent.
基金Projects(51304135,50971089)supported by the National Natural Science Foundation of ChinaProject(A1420110045)supported by National Defense Basic Research Plan,China+1 种基金Project(11QH1401200)supported by the Shanghai Phospherus Program,ChinaProject(NCET-11-0329)supported by the New Century Excellent Talents in University of Ministry of Education of China
文摘A Mg-14.28Gd-2.44Zn-0.54Zr (mass fraction, %) alloy was prepared by conventional ingot metallurgy (I/M). The microstructure differences in as-cast and solution-treated alloys were investigated. Sliding tribological behaviors of the as-cast and solution-treated alloys were investigated under oil lubricant condition by pin-on-disc configuration. The wear loss and friction coefficients were measured at a load of 40 N and sliding speeds of 30-300 mm/s with a sliding distance of 5000 m at room temperature. The results show that the as-cast alloy is mainly composed ofα-Mg solid solution, the lamellar 14H-type long period stacking ordered (LPSO) structure within matrix, andβ-[(Mg,Zn)3Gd] phase. However, most of theβ-phase transforms to X-phase with 14H-type LPSO structure after solution heat treatment at 773 K for 35 h (T4). The solution-treated alloy presents low wear-resistance, because the hard β-phase is converted into thermally-stable, ductile and soft X-Mg12GdZn phase with LPSO structure in the alloy.
基金financially supported by the International Visegrad Fund(project V4-Japan Joint Research Program,Ref.JP3936)the National Research,Development and Innovation Office(Contract No.:2019-2.1.7-ERANET-2021-00030)+1 种基金Support by the Ministry of Education,Youth and Sports of Czech Republic in the framework of Visegrad Group(V4)-Japan Joint Research Program-Advanced Materials under grant No.8F21011supported by JST SICORP Grant Number JPMJSC2109,Japan。
文摘Mg-Y-Zn-Al alloys processed by rapidly solidified ribbon consolidation(RSRC)technique exhibit an exceptional mechanical performance indicating promising application potential.This material has a bimodal microstructure consisting of fine recrystallized and coarse non-recrystallized grains with solute-rich stacking faults forming cluster arranged layers(CALs)and nanoplates(CANaPs),or complete long period stacking ordered(LPSO)phase.In order to reveal the deformation mechanisms,in-situ synchrotron X-ray diffraction line profile analysis was employed for a detailed study of the dislocation arrangement created during tension in Mg-0.9%Zn-2.05%Y-0.15%Al(at%)alloy.For uncovering the effect of the initial microstructure on the mechanical performance,additional samples were obtained by annealing of the as-consolidated specimen at 300 and 400℃ for 2 h.The heat treatment at 300℃ had no significant effect on the initial microstructure,its evolution during tension and,thus,the overall deformation behavior under tensile loading.On the other hand,annealing at 400℃ resulted in a significant increase of the recrystallized grains fraction and a decrease of the dislocation density,leading to only minor degradation of the mechanical strength.The maximum dislocation density at the failure of the samples corresponding to the plastic strain of 10-25% was estimated to be about 16-20×10^(14)m^(-2).The diffraction profile analysis indicated that most dislocations formed during tension were of non-basal and pyramidal types,what was also in agreement with the Schmid factor values revealed independently from orientation maps.It was also shown that the dislocation-induced Taylor hardening was much lower below the plastic strain of 3% than above this value,which was explained by a model of the interaction between prismatic dislocations and CANaPs/LPSO plates.