In the 2016 EAST experimental campaign,a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive,through an...In the 2016 EAST experimental campaign,a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive,through an integrated control of the wall conditioning,plasma configuration,divertor heat flux,particle exhaust,impurity management,and effective coupling of multiple RF heating and current drive sources at high injected power.The plasma current(Ip - 0.45 MA) was fully-noninductively driven(Vloop 〈 0.0 V) by a combination of-2.5 MW LHW,-0.4 MW ECH and -0.8 MW ICRF.This result demonstrates the progress of physics and technology studies on EAST,and will benefit the physics basis for steady state operation of ITER and CFETR.展开更多
Abstract EAST has demonstrated its capability of long pulse operation using RF heating (LHCD and ICRF) in past experiments. One key issue to realize the long pulse H-mode expert- meats is to sustain the plasma curre...Abstract EAST has demonstrated its capability of long pulse operation using RF heating (LHCD and ICRF) in past experiments. One key issue to realize the long pulse H-mode expert- meats is to sustain the plasma current for steady state operation. Based on the calculations of the transport code ONETWO and its coupled RF code GENRAY, two scenarios have been proposed to achieve the 10 s H-mode plasma with Ip=400 kA, 〈 ne 〉=4.5×1019 m-a, βN=2, and the 100 s H-mode plasma with Ip=280 kA, 〈 ne 〉=3.5×1019 m-a, βN=1.8 recently. The current drive of lower hybrid wave is an important issue in the two scenarios. An experimental result on lower hybrid current drive in H-mode plasmas on EAST is also presented.展开更多
Long pulse discharge is one of the important goals of HT-7 superconducting tokamak experiments. For ITER (International Thermonuclear Experimental Reactor) or a tokamak reactor, carrying out a steady operation is on...Long pulse discharge is one of the important goals of HT-7 superconducting tokamak experiments. For ITER (International Thermonuclear Experimental Reactor) or a tokamak reactor, carrying out a steady operation is one of the main techniques. For long pulse discharges on HT-7 the poloidal flux is used as the feedback signal to control the injected power of LHCD (Low Hybrid Current Drive) system. Experimental results are presented.展开更多
The main efforts of HT-7 superconducting tokamak are directed to quasi-steady state discharges and relevant physics. Significant progress has been realized in obtaining high-performance discharges under a quasi-steady...The main efforts of HT-7 superconducting tokamak are directed to quasi-steady state discharges and relevant physics. Significant progress has been realized in obtaining high-performance discharges under a quasi-steady state in HT-7. The long pulse discharges have been obtained with duration up to more than one minute. Wall recycling has been studied in the long duration discharges in HT-7. The recycling coefficient R of each plasma increases with time. The uncontrolled density increase is accompanied by hydrogen and the impurity influx originating mainly from the limiter surface and the parts of the inner vessel. The edge recycling after boronization will also be discussed in this paper.展开更多
The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP(Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutralbeam test stand and ...The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP(Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutralbeam test stand and two for the EAST neutral-beam injectors(NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 ke V was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.展开更多
A high-power 28 GHz gyrotron has been successfully developed at the Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron was designed for electron cyclotron resonance heating(ECRH)in the...A high-power 28 GHz gyrotron has been successfully developed at the Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron was designed for electron cyclotron resonance heating(ECRH)in the spherical tokamak XL-50.A diode magnetron injection gun was designed to produce the required gyrating electron beam.The gyrotron operates in the TE8,3mode in a cylindrical open cavity.An internal quasi-optical mode converter was designed to convert the operating mode into a fundamental Gaussian wave beam and separate the spent electron beam from the outgoing microwave power.A tube has been built and successfully tested.The operational frequency of the tube is 28.1 GHz.For beam parameters at an accelerating voltage of 71 kV and beam current of 16 A,the gyrotron has delivered an output power of 400 kW,with a pulse length of 5 s.The output efficiency is about 50%with a singlestage depressed collector.The gyrotron has been installed on the XL-50 and has played an important role in the ECRH experiments.展开更多
The temperature distributions in the metallic foils induced by spatially cylindrical long-pulsed laser is examined in order to analyse the newly-discovered reverse-pluggingeffect ( RPE).An exact solution for the tempe...The temperature distributions in the metallic foils induced by spatially cylindrical long-pulsed laser is examined in order to analyse the newly-discovered reverse-pluggingeffect ( RPE).An exact solution for the temperature fields is derived by using the Hankel transform and Laplace transform.Numerical results are obtained for bothspatial distributions with Gaussian and cylindrical types.The results show that thespatially cylindrical distribution of laser offers a formidable potential for the RPE.展开更多
In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering stru...In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.展开更多
To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The res...To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The results indicate that it is feasible to employ a helical line as a long-pulse PFL, and the influence of its dispersion is negligible. Compared with a conventional coaxial PFL, the helical PFL with the same size can produce a longer pulse.展开更多
Stationary long pulse plasma of high electron temperature was produced on EAST for the first time through an integrated control of plasma shape, divertor heat flux, particle exhaust, wall conditioning, impurity manage...Stationary long pulse plasma of high electron temperature was produced on EAST for the first time through an integrated control of plasma shape, divertor heat flux, particle exhaust, wall conditioning, impurity management, and the coupling of multiple heating and current drive power. A discharge with a lower single null divertor configuration was maintained for 103 s at a plasma current of 0.4 MA, q95 ≈7.0, a peak electron temperature of 〉4.5 keV, and a central density ne(0)-2.5×10^19 m^-3. The plasma current was nearly non-inductive (Vloop 〈0.05 V, poloidal beta - 0.9) driven by a combination of 0.6 MW lower hybrid wave at 2.45 GHz, 1.4 MW lower hybrid wave at 4.6 GHz, 0.5 MW electron cyclotron heating at 140 GHz, and 0.4 MW modulated neutral deuterium beam injected at 60 kV. This progress demonstrated strong synergy of electron cyclotron and lower hybrid electron heating, current drive, and energy confinement of stationary plasma on EAST. It further introduced an example of integrated "hybrid" operating scenario of interest to ITER and CFETR.展开更多
In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the be...In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the beam source was tested on the RF source test facility with RF plasma generation,negative ion production and extraction.A magnetic filter system and a Cs injection system were employed to enhance the negative ion production.As a result,a long pulse of 105 s negative ion beam with current density of 153 A m-2 was repeatedly extracted successfully.The source pressure is 0.6 Pa and the ratio of co-extracted electron and negative ion current is around0.3.The details of design and experimental results of beam source were shown in this letter.展开更多
Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat ...Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat load on the surface of the movable limiter could be obtained through ANSYS with the temperature measured by IR-camera. This work could be important for the temperature measurement and heat load study on the first wall of EAST device.展开更多
The principle of Marx-pulse forming networks(PFN)is introduced in this paper.The PSpice simulation result of the Marx-PFN is presented and a smooth waveform is obtained in the condition of equal capacitance.Through op...The principle of Marx-pulse forming networks(PFN)is introduced in this paper.The PSpice simulation result of the Marx-PFN is presented and a smooth waveform is obtained in the condition of equal capacitance.Through optimizing the parameters of the networks,a 4-stage Marx-PFN has been built,a 40kV output with a FWHM of 3μs and a fiat-top of 2μs is obtained on the marched resistance of 18Ωwhen the Marx-PFN is changed to 20kV.展开更多
基金supported by the National Magnetic Conlinement Fusion Science Program of China(Nos.2015GB102000 and 2015GB103000)
文摘In the 2016 EAST experimental campaign,a steady-state long-pulse H-mode discharge with an ITER-like tungsten divertor lasting longer than one minute has been obtained using only RF heating and current drive,through an integrated control of the wall conditioning,plasma configuration,divertor heat flux,particle exhaust,impurity management,and effective coupling of multiple RF heating and current drive sources at high injected power.The plasma current(Ip - 0.45 MA) was fully-noninductively driven(Vloop 〈 0.0 V) by a combination of-2.5 MW LHW,-0.4 MW ECH and -0.8 MW ICRF.This result demonstrates the progress of physics and technology studies on EAST,and will benefit the physics basis for steady state operation of ITER and CFETR.
基金supported by the National Magnetic Confinement Fusion Program of China(Nos.2014GB106000,2014GB106001,and2014GB106003)National Natural Science Foundation of China(Nos.11275234,11321092,11305215,11305208,11405214)CAS Hefei Center for Scientific Research Program of China(No.2015SRG-HSC010)
文摘Abstract EAST has demonstrated its capability of long pulse operation using RF heating (LHCD and ICRF) in past experiments. One key issue to realize the long pulse H-mode expert- meats is to sustain the plasma current for steady state operation. Based on the calculations of the transport code ONETWO and its coupled RF code GENRAY, two scenarios have been proposed to achieve the 10 s H-mode plasma with Ip=400 kA, 〈 ne 〉=4.5×1019 m-a, βN=2, and the 100 s H-mode plasma with Ip=280 kA, 〈 ne 〉=3.5×1019 m-a, βN=1.8 recently. The current drive of lower hybrid wave is an important issue in the two scenarios. An experimental result on lower hybrid current drive in H-mode plasmas on EAST is also presented.
文摘Long pulse discharge is one of the important goals of HT-7 superconducting tokamak experiments. For ITER (International Thermonuclear Experimental Reactor) or a tokamak reactor, carrying out a steady operation is one of the main techniques. For long pulse discharges on HT-7 the poloidal flux is used as the feedback signal to control the injected power of LHCD (Low Hybrid Current Drive) system. Experimental results are presented.
基金The project supported by the Meg-science Engineering Project of the Chinese Academy of Sciences
文摘The main efforts of HT-7 superconducting tokamak are directed to quasi-steady state discharges and relevant physics. Significant progress has been realized in obtaining high-performance discharges under a quasi-steady state in HT-7. The long pulse discharges have been obtained with duration up to more than one minute. Wall recycling has been studied in the long duration discharges in HT-7. The recycling coefficient R of each plasma increases with time. The uncontrolled density increase is accompanied by hydrogen and the impurity influx originating mainly from the limiter surface and the parts of the inner vessel. The edge recycling after boronization will also be discussed in this paper.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB101003)National Natural Science Foundation of China(No.11505225)Foundation of ASIPP(No.DSJJ-15-GC03)
文摘The long-pulse power-supply system equipped for the 4 MW beam-power ion source is comprised of three units at ASIPP(Institute of Plasma Physics, Chinese Academy of Sciences): one for the neutralbeam test stand and two for the EAST neutral-beam injectors(NBI-1 and NBI-2, respectively). Each power supply system consists of two low voltage and high current DC power supplies for plasma generation of the ion source, and two high voltage and high current DC power supplies for the accelerator grid system. The operation range of the NB power supply is about 80 percent of the design value, which is the safe and stable operation range. At the neutral-beam test stand, a hydrogen ion beam with a beam pulse of 150 s, beam power of 1.5 MW and beam energy of 50 ke V was achieved during the long-pulse testing experiments. The result shows that the power-supply system meets the requirements of the EAST-NBIs fully and lays a basis for achieving plasma heating.
基金partially supported by National Natural Science Foundation(No.12175217)the State Administration of Science,Technology and Industry for Nation Defense of China,Technology Foundation Project(No.JSJL2021212B003)。
文摘A high-power 28 GHz gyrotron has been successfully developed at the Institute of Applied Electronics,China Academy of Engineering Physics.This gyrotron was designed for electron cyclotron resonance heating(ECRH)in the spherical tokamak XL-50.A diode magnetron injection gun was designed to produce the required gyrating electron beam.The gyrotron operates in the TE8,3mode in a cylindrical open cavity.An internal quasi-optical mode converter was designed to convert the operating mode into a fundamental Gaussian wave beam and separate the spent electron beam from the outgoing microwave power.A tube has been built and successfully tested.The operational frequency of the tube is 28.1 GHz.For beam parameters at an accelerating voltage of 71 kV and beam current of 16 A,the gyrotron has delivered an output power of 400 kW,with a pulse length of 5 s.The output efficiency is about 50%with a singlestage depressed collector.The gyrotron has been installed on the XL-50 and has played an important role in the ECRH experiments.
文摘The temperature distributions in the metallic foils induced by spatially cylindrical long-pulsed laser is examined in order to analyse the newly-discovered reverse-pluggingeffect ( RPE).An exact solution for the temperature fields is derived by using the Hankel transform and Laplace transform.Numerical results are obtained for bothspatial distributions with Gaussian and cylindrical types.The results show that thespatially cylindrical distribution of laser offers a formidable potential for the RPE.
基金Federal Highway Administration(FHWA) Under Grant No.DTFH41-98900094
文摘In the 1990s, several major earthquakes occurred throughout the world, with a common observation that near fault ground motion (NFGM) characteristics had a distinct impact on causing damage to civil engineering structures that could not be predicted by using far field ground motions. Since then, seismic responses of structures under NFGMs have been extensively examined, with most of the studies focusing on structures with relatively short fundamental periods, where the traveling wave effect does not need to be considered. However, for long span bridges, especially arch bridges, the traveling wave (only time delay considered) effect may be very distinct and is therefore important. In this paper, the results from a case study on the seismic response of a steel arch bridge under selected NFGMs is presented by considering the traveling wave effect with variable apparent velocities. The effects of fling step and long period pulses of NFGMs on the seismic responses of the arch bridge are also discussed.
基金supported by the National 863 Project of China (Grant No. 2005AA835051)
文摘To investigate the feasibility for a helical line to be used as a pulse forming line (PFL), the transmission characteristics of the helical transmission line is studied both theoretically and experimentally. The results indicate that it is feasible to employ a helical line as a long-pulse PFL, and the influence of its dispersion is negligible. Compared with a conventional coaxial PFL, the helical PFL with the same size can produce a longer pulse.
基金supported by the National Magnetic Confinement Fusion Science Foundation of China(Nos.2015GB102000 and 2014GB103000)
文摘Stationary long pulse plasma of high electron temperature was produced on EAST for the first time through an integrated control of plasma shape, divertor heat flux, particle exhaust, wall conditioning, impurity management, and the coupling of multiple heating and current drive power. A discharge with a lower single null divertor configuration was maintained for 103 s at a plasma current of 0.4 MA, q95 ≈7.0, a peak electron temperature of 〉4.5 keV, and a central density ne(0)-2.5×10^19 m^-3. The plasma current was nearly non-inductive (Vloop 〈0.05 V, poloidal beta - 0.9) driven by a combination of 0.6 MW lower hybrid wave at 2.45 GHz, 1.4 MW lower hybrid wave at 4.6 GHz, 0.5 MW electron cyclotron heating at 140 GHz, and 0.4 MW modulated neutral deuterium beam injected at 60 kV. This progress demonstrated strong synergy of electron cyclotron and lower hybrid electron heating, current drive, and energy confinement of stationary plasma on EAST. It further introduced an example of integrated "hybrid" operating scenario of interest to ITER and CFETR.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)
文摘In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the beam source was tested on the RF source test facility with RF plasma generation,negative ion production and extraction.A magnetic filter system and a Cs injection system were employed to enhance the negative ion production.As a result,a long pulse of 105 s negative ion beam with current density of 153 A m-2 was repeatedly extracted successfully.The source pressure is 0.6 Pa and the ratio of co-extracted electron and negative ion current is around0.3.The details of design and experimental results of beam source were shown in this letter.
基金National Natural Science Foundation of China(No.10305011)
文摘Temperature measurement by IR (infrared) camera was performed oll HT-T tokamak. particularly during long pulse discharges, during which the temperature of the hot spots on the belt limiter exceeded 1000℃. The heat load on the surface of the movable limiter could be obtained through ANSYS with the temperature measured by IR-camera. This work could be important for the temperature measurement and heat load study on the first wall of EAST device.
文摘The principle of Marx-pulse forming networks(PFN)is introduced in this paper.The PSpice simulation result of the Marx-PFN is presented and a smooth waveform is obtained in the condition of equal capacitance.Through optimizing the parameters of the networks,a 4-stage Marx-PFN has been built,a 40kV output with a FWHM of 3μs and a fiat-top of 2μs is obtained on the marched resistance of 18Ωwhen the Marx-PFN is changed to 20kV.