All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However,...All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However, PEO-based ASSLSBs face the dilemma of insufficient Coulombic efficiency and long-term stability caused by the coupling problems of dendrite growth of anode and polysulfide shuttle of cathode. In this work, 1,3,5-trioxane(TOX) is used as a functional additive to design a PEO-based composite solidstate electrolyte(denoted as TOX-CSE), which realizes the stable long-term cycle of an ASSLSB. The results show that TOX can in-situ decompose on the anode to form a composite solid electrolyte interphase(SEI) layer with rich-organic component. It yields a high average modulus of 5.0 GPa, greatly improving the mechanical stability of the SEI layer and thus inhibiting the growth of dendrites. Also,the robust SEI layer can act as a barrier to block the side reaction between polysulfides and lithium metal.As a result, a Li-Li symmetric cell assembled with a TOX-CSE exhibits prolonged cycling stability over 2000 h at 0.2 m A cm^(-2). The ASSLSB also shows a stable cycling performance of 500 cycles at 0.5 C.This work reveals the structure–activity relationship between the mechanical property of interface layer and the battery's cycling stability.展开更多
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility wit...Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries.展开更多
To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to succe...To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.展开更多
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here...There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.展开更多
Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S...Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries.展开更多
We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. I...We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. It is proved that there exists a global attractor of the discrete dynamical system. Furthermore, we obtain the long-time stability and convergence of the difference scheme and the upper semicontinuity d(Ah,τ, .A) → O. Our results show that the difference scheme can effectively simulate the infinite dimensional dynamical systems.展开更多
Supercapacitors display promising electrochemical performance with high power density and excellent cycle stability.However,their low energy density limits their advancement in a broader range of applications.To enhan...Supercapacitors display promising electrochemical performance with high power density and excellent cycle stability.However,their low energy density limits their advancement in a broader range of applications.To enhance their energy density,we proposed self-assembled spinel NiMn2S4nanoflakes grown on nickel foam which we successfully prepared by a facile hydrothermal method.The NiMn2S4electrode delivers a high capacitance of 2096.7 F g^(-1)at 1.0 A g^(-1),with an exceptional rate capability(~720.6 F g^(-1)at a very high current density of 100 A g^(-1))and good cycle stability(~85.1%retention of the initial capacitance after 7000 cycles with the Coulombic efficiency around 100%).The as-fabricated asymmetric supercapacitors based on NiMn2S4nanoflakes//active carbon demonstrate an energy density of 73.6 W h kg^(-1)at 800.5 W kg^(-1)and adequate cycling performance of~84.6%capacitance retention at 15 A g^(-1)after 10000 cycles.The results reveal that the nanostructured NiMn2S4is an excellent electrode material for high-performance energy storage applications.展开更多
Benefiting from the high capacity of Zn metal anodes and intrinsic safety of aqueous electrolytes,rechargeable Zn ion batteries(ZIBs)show promising application in the post‐lithium‐ion period,exhibiting good safety,l...Benefiting from the high capacity of Zn metal anodes and intrinsic safety of aqueous electrolytes,rechargeable Zn ion batteries(ZIBs)show promising application in the post‐lithium‐ion period,exhibiting good safety,low cost,and high energy density.However,its commercialization still faces problems with low Coulombic efficiency and unsatisfied cycling performance due to the poor Zn/Zn2+reversibility that occurred on the Zn anode.To improve the stability of the Zn anode,optimizing the Zn deposition behavior is an efficient way,which can enhance the subsequent striping efficiency and limit the dendrite growth.The Zn deposition is a controlled kinetics‐diffusion joint process that is affected by various factors,such as the interaction between Zn2+ions and Zn anodes,ion concentration gradient,and current distribution.In this review,from an electrochemical perspective,we first overview the factors affecting the Zn deposition behavior and summarize the modification principles.Subsequently,strategies proposed for interfacial modification and 3D structural design as well as the corresponding mechanisms are summarized.Finally,the existing challenges,perspectives on further development direction,and outlook for practical applications of ZIBs are proposed.展开更多
The lepidocrocite-type H_(1.07)Ti_(1.73)O_(4) microsized structures with a tap density of 0.88 g·cm^(-3) were prepared through the ion exchange method with K_(0.8)Li_(0.27)Ti_(1.73)O_(4) powder as the precursor,a...The lepidocrocite-type H_(1.07)Ti_(1.73)O_(4) microsized structures with a tap density of 0.88 g·cm^(-3) were prepared through the ion exchange method with K_(0.8)Li_(0.27)Ti_(1.73)O_(4) powder as the precursor,and they exhibited good rate performance and outstanding cycle stability as an anode material for lithium ion batteries(LIB).The ion exchange method provides favorable conditions for H_(1.07)Ti_(1.73)O_(4) as an anode electrode material for LIBs.X-ray photoelectron spectroscopy(XPS)result demonstrates the existence of defects in the nonstoichiometric H1.07Ti1.73O4,which have a beneficial effect on the LIB performance.The electrochemical performance test proves that the half-cell with microsized H_(1.07)Ti_(1.73)O_(4)as the anode electrode can maintain a specific capacity of 129.5 mAh·g^(-1) after 1100 cycles and 101 mAh·g^(-1)after 3000 long cycles at high current densities of 2.0 and 5.0 A·g^(-1),respectively.In addition,the small volume change rate of 3.6%in H_(1.07)Ti_(1.73)O_(4)during Li ion insertion was confirmed by real-time in situ transmission electron microscopy(TEM).The LiFePO_(4)||H_(1.07)Ti_(1.73)O_(4)full battery exhibits a longterm cycling stability with a specific capacity of73.8 mAh·g^(-1) at a current density of 500 mA·g^(-1) after 200 cycles.展开更多
Rechargeable aluminum batteries(RABs)are a popular energy storage device because of its safety and environmental protection.As cathode materials of RABs,transition metal oxide,sulfide,and selenide have become the rese...Rechargeable aluminum batteries(RABs)are a popular energy storage device because of its safety and environmental protection.As cathode materials of RABs,transition metal oxide,sulfide,and selenide have become the research hotspot.In this work,we have successfully prepared CuO,Cu_(1.8)S,and Cu_(1.8)Se electrode materials.Among them,although Cu_(1.8)Se had a relatively higher initial discharge capacity,all of these products had severe capacity degradation in terms of cycling and rate performance.Furthermore,for solving the problem of capacity decline,CMK-3 modified separator was used to make the Cu_(1.8)Se cathode material more stable,thus improving cycling and rate performance.It can be confirmed by ex situ X-ray photoelectron spectroscopy(XPS)that both Cu and Se elements underwent reversible redox reactions during the charging/discharging process.Density functional theory was implemented to study the energy storage mechanism of CumX(X=O,S,Se).The results showed that Cu_(1.8)S and Cu_(1.8)Se mainly relied on AlCl4−for energy storage,and the intercalation/de-intercalation of Al3+occurred during the charge/discharge process in CuO material.Consequently,the optimized Cu_(1.8)Se/CMK-3@GF/C/Al revealed an outstanding rate capability(977.83 mAh·g^(−1)at 0.5 A·g^(−1))and long cyclic stability(retention of 478.77 mAh·g^(−1)after 500 cycles at 1.0 A·g^(−1)).Compared to previously reported cathode materials of RABs,this type of battery displays great superiority in terms of rate and cycling stability.This research also provides a novel approach to suppress the shuttle effect of active species for advanced clean energy devices.展开更多
All-inorganic cesium lead halide based perovskite nanocrystals(PNCs)exhibit promising optoelectronic properties,but their poor stability and anion exchange reaction limit their broad commercial applications.Herein,we ...All-inorganic cesium lead halide based perovskite nanocrystals(PNCs)exhibit promising optoelectronic properties,but their poor stability and anion exchange reaction limit their broad commercial applications.Herein,we demonstrated the successful synthesis of blue-green-red emitting CsPbX_(3)(X=Cl/Br,Br,and Br/I)PNCs via hot injection method,followed by silica-coating and embedding in poly(methylmethacrylate)(PMMA)matrix.The photoluminescence(PL)spectra of SiO_(2)/PMMA-coated PNCs can be tuned continuously by regulating precursor composition ratio,from blue(CsPb(Cl_(0.5)/Br_(0.5))_(3);460 nm)to red(CsPb(Br_(0.4)/I_(0.6))_(3)via green(CsPbBr_(3);519 nm).The PNCs composite films exhibit improved stability(thermal-,moisture-,and photo-stability)because of the barrier formed by Si0_(2)/PMMA coating and also displayed exceptional photoluminescent quantum yield(PLQY of blue,green,and red-emitting Si0_(2)/PMMA coated PNCs are 37%,86%,and 71%,respectively)with longer lifetimes inhibiting anion exchange.Eventually,the PNCs-encapsulated Si0_(2)/PMMA composite films were integrated into the UV LED chip as down-converting materials to construct a prototype white-peLED unit.The designed white-peLED unit demonstrated bright white light generating CIE coordinates(0.349,0.350),a luminous efficiency(LE)of 39.2%and a color rendering index(CRI)of 84.7.The wide color gamut of 121.47%of NTSC and 98.56%of Rec.2020 is also achieved with the built w-LED system.Therefore,the results demonstrated that CsPbX_(3)(X=Cl/Br,Br,and Br/I)PNCs@SiO_(2)/PMMA composite films can be employed as efficient UV to visible color conversion materials for white-LEDs and backlighting.展开更多
In this work,we report a high-performance self-standing supercapacitor electrode of mixed nickel manganese sulfides (NMSs)with a cracked-bark shape grown by one-step electrochemical deposition on activated carbon clot...In this work,we report a high-performance self-standing supercapacitor electrode of mixed nickel manganese sulfides (NMSs)with a cracked-bark shape grown by one-step electrochemical deposition on activated carbon cloth (ACC).The electrode possesses outstanding electrochemical properties,including a high specific capacitance of up to 3142.8 F g^(-1)at 1.0 A g^(-1),the high-rate performance (~1206.8 F g^(-1)at 60.0 A g^(-1)),and cycle stability (~92.3%capacitance retention after 8000 cycles at8 A g^(-1)).An asymmetric supercapacitor assembled using NMSs on ACC as the cathode,activated carbon on carbon cloth as the anode and 1.0 mol L;KOH as the electrolyte delivers a high energy density of 111.2 W h kg^(-1)at 800.0 W kg^(-1)and the prominent cycling performance of~93.2%capacitance retention after 10000 cycles at 5 A g^(-1)with the Columbic efficiency of around 100%during these 10000 cycles.The high performance and facile preparation indicate that the NMSs on ACC hold a huge potential as the electrode for supercapacitors.展开更多
This paper is concerned with the derivative nonlinear Schr?dinger equation with periodic boundary conditions.We obtain complete Birkhoff normal form of order six.As an application,the long time stability for solutions...This paper is concerned with the derivative nonlinear Schr?dinger equation with periodic boundary conditions.We obtain complete Birkhoff normal form of order six.As an application,the long time stability for solutions of small amplitude is proved.展开更多
基金National Natural Science Foundation of China (Grant Nos. 22178125 and 21875071)。
文摘All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However, PEO-based ASSLSBs face the dilemma of insufficient Coulombic efficiency and long-term stability caused by the coupling problems of dendrite growth of anode and polysulfide shuttle of cathode. In this work, 1,3,5-trioxane(TOX) is used as a functional additive to design a PEO-based composite solidstate electrolyte(denoted as TOX-CSE), which realizes the stable long-term cycle of an ASSLSB. The results show that TOX can in-situ decompose on the anode to form a composite solid electrolyte interphase(SEI) layer with rich-organic component. It yields a high average modulus of 5.0 GPa, greatly improving the mechanical stability of the SEI layer and thus inhibiting the growth of dendrites. Also,the robust SEI layer can act as a barrier to block the side reaction between polysulfides and lithium metal.As a result, a Li-Li symmetric cell assembled with a TOX-CSE exhibits prolonged cycling stability over 2000 h at 0.2 m A cm^(-2). The ASSLSB also shows a stable cycling performance of 500 cycles at 0.5 C.This work reveals the structure–activity relationship between the mechanical property of interface layer and the battery's cycling stability.
基金supported by the National Natural Science Foundation of China(52003293,51927806,52272258)the Fundamental Research Funds for the Central Universities(2023ZKPYJD07)the Beijing Nova Program(20220484214).
文摘Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries.
基金supported by the National Natural Science Foundation of China (Grant No.22005143)Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)。
文摘To achieve the controllable release of energy of nitrocellulose-based propellants,this paper combines the cellulose-based nanocomposites aqueous coating(Surelease®-NC)with fluidized bed coating equipment to successfully prepare the coated spherical propellant for the first time.The effects of fluidized bed coating temperature,air velocity,flow speed and atomization pressure on the adhesion rate,coating integrity and coating uniformity of the coated spherical propellant were investigated,and the preparation of coated spherical propellant with homogeneous size and structural integrity was achieved for the first time.The microscopic morphology,chemical structure,water vapor adsorption behavior,combustion performance,and ageing resistance property of the coated spherical propellant were systematically investigated by,Fourier transforms infrared spectroscopy(FTIR),Micro confocal raman spectrometer,field scanning electron microscopy(SEM),dynamic vapor adsorption techniques,and closed bomb test,confirming the surface core-shell structure and the tightly bonded interfacial structure of coated spherical propellant.Meanwhile,the coated spherical propellant has good hygroscopic,excellent progressive burning and long storage stability.
基金support from the National Key Research and Development Program of China(Nos.2023YFC2907300 and 2019YFE0118500)the National Natural Science Foundation of China(Nos.U22A20598 and 52104107)the Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support.
基金financially supported by the National Key R&D Program of China(Grants 2016YBF0100100,2016YFA0200200)the National Natural Science Foundation of China(Grants 51872283,21805273)+1 种基金the Liaoning Bai Qian Wan Talents Program,Natural Science Foundation of Liaoning Province,Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant 20180510038)the Liao Ning Revitalization Talents Program(Grant XLYC1807153),DICP(DICP ZZBS201708,DICP ZZBS201802,DICP I202032),DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915),DICP&QIBEBT(Grant DICP&QIBEBT UN201702)。
文摘Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries.
基金The NSF (10871055) of Chinathe Fundamental Research Funds (HEUCFL20111102)for the Central Universities
文摘We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. It is proved that there exists a global attractor of the discrete dynamical system. Furthermore, we obtain the long-time stability and convergence of the difference scheme and the upper semicontinuity d(Ah,τ, .A) → O. Our results show that the difference scheme can effectively simulate the infinite dimensional dynamical systems.
基金partly supported by the Natural Science Foundation of Gansu,China(Grant Nos.22YF7GA009 and 20JR10RA611)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021 sp54)。
文摘Supercapacitors display promising electrochemical performance with high power density and excellent cycle stability.However,their low energy density limits their advancement in a broader range of applications.To enhance their energy density,we proposed self-assembled spinel NiMn2S4nanoflakes grown on nickel foam which we successfully prepared by a facile hydrothermal method.The NiMn2S4electrode delivers a high capacitance of 2096.7 F g^(-1)at 1.0 A g^(-1),with an exceptional rate capability(~720.6 F g^(-1)at a very high current density of 100 A g^(-1))and good cycle stability(~85.1%retention of the initial capacitance after 7000 cycles with the Coulombic efficiency around 100%).The as-fabricated asymmetric supercapacitors based on NiMn2S4nanoflakes//active carbon demonstrate an energy density of 73.6 W h kg^(-1)at 800.5 W kg^(-1)and adequate cycling performance of~84.6%capacitance retention at 15 A g^(-1)after 10000 cycles.The results reveal that the nanostructured NiMn2S4is an excellent electrode material for high-performance energy storage applications.
基金The authors acknowledge the National Key Research and Development Program(No.2022YFE0121000)Fundamental Research Funds for the Central Universitiesthe Project for Graduate Innovation Team of the Northwestern Polytechnical University,and the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX2021042).
文摘Benefiting from the high capacity of Zn metal anodes and intrinsic safety of aqueous electrolytes,rechargeable Zn ion batteries(ZIBs)show promising application in the post‐lithium‐ion period,exhibiting good safety,low cost,and high energy density.However,its commercialization still faces problems with low Coulombic efficiency and unsatisfied cycling performance due to the poor Zn/Zn2+reversibility that occurred on the Zn anode.To improve the stability of the Zn anode,optimizing the Zn deposition behavior is an efficient way,which can enhance the subsequent striping efficiency and limit the dendrite growth.The Zn deposition is a controlled kinetics‐diffusion joint process that is affected by various factors,such as the interaction between Zn2+ions and Zn anodes,ion concentration gradient,and current distribution.In this review,from an electrochemical perspective,we first overview the factors affecting the Zn deposition behavior and summarize the modification principles.Subsequently,strategies proposed for interfacial modification and 3D structural design as well as the corresponding mechanisms are summarized.Finally,the existing challenges,perspectives on further development direction,and outlook for practical applications of ZIBs are proposed.
基金supported by the National Natural Science Foundation of China(Nos.U1804132,51802288 and 11504331)Academic Improvement Program of Physics of Zhengzhou University(No.2018WLTJ02)Zhengzhou University Youth Talent Start-up Grant,Zhongyuan Youth Talent Support Program of Henan Province(No.ZYQR201912152)。
文摘The lepidocrocite-type H_(1.07)Ti_(1.73)O_(4) microsized structures with a tap density of 0.88 g·cm^(-3) were prepared through the ion exchange method with K_(0.8)Li_(0.27)Ti_(1.73)O_(4) powder as the precursor,and they exhibited good rate performance and outstanding cycle stability as an anode material for lithium ion batteries(LIB).The ion exchange method provides favorable conditions for H_(1.07)Ti_(1.73)O_(4) as an anode electrode material for LIBs.X-ray photoelectron spectroscopy(XPS)result demonstrates the existence of defects in the nonstoichiometric H1.07Ti1.73O4,which have a beneficial effect on the LIB performance.The electrochemical performance test proves that the half-cell with microsized H_(1.07)Ti_(1.73)O_(4)as the anode electrode can maintain a specific capacity of 129.5 mAh·g^(-1) after 1100 cycles and 101 mAh·g^(-1)after 3000 long cycles at high current densities of 2.0 and 5.0 A·g^(-1),respectively.In addition,the small volume change rate of 3.6%in H_(1.07)Ti_(1.73)O_(4)during Li ion insertion was confirmed by real-time in situ transmission electron microscopy(TEM).The LiFePO_(4)||H_(1.07)Ti_(1.73)O_(4)full battery exhibits a longterm cycling stability with a specific capacity of73.8 mAh·g^(-1) at a current density of 500 mA·g^(-1) after 200 cycles.
基金the National Natural Science Foundation of China(No.52102233)Nature Science Foundation of Hebei Province(No.E2021201006).
文摘Rechargeable aluminum batteries(RABs)are a popular energy storage device because of its safety and environmental protection.As cathode materials of RABs,transition metal oxide,sulfide,and selenide have become the research hotspot.In this work,we have successfully prepared CuO,Cu_(1.8)S,and Cu_(1.8)Se electrode materials.Among them,although Cu_(1.8)Se had a relatively higher initial discharge capacity,all of these products had severe capacity degradation in terms of cycling and rate performance.Furthermore,for solving the problem of capacity decline,CMK-3 modified separator was used to make the Cu_(1.8)Se cathode material more stable,thus improving cycling and rate performance.It can be confirmed by ex situ X-ray photoelectron spectroscopy(XPS)that both Cu and Se elements underwent reversible redox reactions during the charging/discharging process.Density functional theory was implemented to study the energy storage mechanism of CumX(X=O,S,Se).The results showed that Cu_(1.8)S and Cu_(1.8)Se mainly relied on AlCl4−for energy storage,and the intercalation/de-intercalation of Al3+occurred during the charge/discharge process in CuO material.Consequently,the optimized Cu_(1.8)Se/CMK-3@GF/C/Al revealed an outstanding rate capability(977.83 mAh·g^(−1)at 0.5 A·g^(−1))and long cyclic stability(retention of 478.77 mAh·g^(−1)after 500 cycles at 1.0 A·g^(−1)).Compared to previously reported cathode materials of RABs,this type of battery displays great superiority in terms of rate and cycling stability.This research also provides a novel approach to suppress the shuttle effect of active species for advanced clean energy devices.
基金the Space Core Technology Development Program(No.2017M1A3A3A02016782).
文摘All-inorganic cesium lead halide based perovskite nanocrystals(PNCs)exhibit promising optoelectronic properties,but their poor stability and anion exchange reaction limit their broad commercial applications.Herein,we demonstrated the successful synthesis of blue-green-red emitting CsPbX_(3)(X=Cl/Br,Br,and Br/I)PNCs via hot injection method,followed by silica-coating and embedding in poly(methylmethacrylate)(PMMA)matrix.The photoluminescence(PL)spectra of SiO_(2)/PMMA-coated PNCs can be tuned continuously by regulating precursor composition ratio,from blue(CsPb(Cl_(0.5)/Br_(0.5))_(3);460 nm)to red(CsPb(Br_(0.4)/I_(0.6))_(3)via green(CsPbBr_(3);519 nm).The PNCs composite films exhibit improved stability(thermal-,moisture-,and photo-stability)because of the barrier formed by Si0_(2)/PMMA coating and also displayed exceptional photoluminescent quantum yield(PLQY of blue,green,and red-emitting Si0_(2)/PMMA coated PNCs are 37%,86%,and 71%,respectively)with longer lifetimes inhibiting anion exchange.Eventually,the PNCs-encapsulated Si0_(2)/PMMA composite films were integrated into the UV LED chip as down-converting materials to construct a prototype white-peLED unit.The designed white-peLED unit demonstrated bright white light generating CIE coordinates(0.349,0.350),a luminous efficiency(LE)of 39.2%and a color rendering index(CRI)of 84.7.The wide color gamut of 121.47%of NTSC and 98.56%of Rec.2020 is also achieved with the built w-LED system.Therefore,the results demonstrated that CsPbX_(3)(X=Cl/Br,Br,and Br/I)PNCs@SiO_(2)/PMMA composite films can be employed as efficient UV to visible color conversion materials for white-LEDs and backlighting.
基金supported by the Natural Science Foundation of Gansu,China(Grant No.20JR10RA611)。
文摘In this work,we report a high-performance self-standing supercapacitor electrode of mixed nickel manganese sulfides (NMSs)with a cracked-bark shape grown by one-step electrochemical deposition on activated carbon cloth (ACC).The electrode possesses outstanding electrochemical properties,including a high specific capacitance of up to 3142.8 F g^(-1)at 1.0 A g^(-1),the high-rate performance (~1206.8 F g^(-1)at 60.0 A g^(-1)),and cycle stability (~92.3%capacitance retention after 8000 cycles at8 A g^(-1)).An asymmetric supercapacitor assembled using NMSs on ACC as the cathode,activated carbon on carbon cloth as the anode and 1.0 mol L;KOH as the electrolyte delivers a high energy density of 111.2 W h kg^(-1)at 800.0 W kg^(-1)and the prominent cycling performance of~93.2%capacitance retention after 10000 cycles at 5 A g^(-1)with the Columbic efficiency of around 100%during these 10000 cycles.The high performance and facile preparation indicate that the NMSs on ACC hold a huge potential as the electrode for supercapacitors.
基金Supported by NNSFC(Grant Nos.11671280,11822108)Fok Ying Tong Education Foundation(Grant No.161002)。
文摘This paper is concerned with the derivative nonlinear Schr?dinger equation with periodic boundary conditions.We obtain complete Birkhoff normal form of order six.As an application,the long time stability for solutions of small amplitude is proved.