A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid ...A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid Droplet Impingement Erosion), etc. Those mechanisms may lead to thinning, leak, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 of USA in 1986 and in Mihama unit 3 of Japan in 1994, the pipe wall thinning management has emerged as one of the most important issues in nuclear power plants. To manage the pipe wall thinning in the secondary system, Korea has used a foreign program since 1996. As using the foreign country’s program for long term, it was necessary to improve from the perspective of the users. Accordingly, KEPCO-E & C has started to develop the 3D-based pipe wall thinning management program (ToSPACE, Total Solution for Piping And Component Engineering management) from eight years ago, and the development was successful. This paper describes the major functions included in ToSPACE program, such as 3D-based DB (Database) buildup, development of FAC and erosion evaluation theories, UT (Ultra-sonic Test) data reliability analysis, field connection with 3D, automatic establishment of long-term inspection plan, etc. ToSPACE program was developed to allow site engineers performing the selection of inspection quantity at each refueling outage, UT data reliability analysis, UT evaluation, determination of next inspection timing, identification of the inspecting and replacing components in 3D drawings, etc., to access easily.展开更多
The paper presents the main features of transmission expansion problem (TEP). In accord with review the aims and influencing factors are defined. The competitive behaviors of market participants, transmission losses, ...The paper presents the main features of transmission expansion problem (TEP). In accord with review the aims and influencing factors are defined. The competitive behaviors of market participants, transmission losses, discrete investment costs, various operating conditions are considered in the model. The model is a mixed-integer linear programming formulation for a static TEP in the competitive environment. The presented methodology is applied to six-node system. In order to point out efficiency of the model the results obtained are compared with traditional problem solution.展开更多
受高比例新能源并网带来的波动性和间歇性影响,新型电力系统的长周期供需不平衡矛盾日益突出。该文将电力系统的长周期供需不平衡风险分为两部分:连续多日无风无光的极端天气场景和月电量供需不平衡风险。首先,选取连续多日无风无光的...受高比例新能源并网带来的波动性和间歇性影响,新型电力系统的长周期供需不平衡矛盾日益突出。该文将电力系统的长周期供需不平衡风险分为两部分:连续多日无风无光的极端天气场景和月电量供需不平衡风险。首先,选取连续多日无风无光的极端天气场景,提出基于条件风险价值理论(conditional value at risk,CvaR)的月电量不平衡风险评估模型。在此基础上,提出考虑长周期供需不平衡风险的新型电力系统规划方法,通过季节性储能等灵活性资源的优化配置,可有效提升电力系统的长周期平衡能力。最后,基于IEEE RTS-79算例分析论证了所提方法的有效性,并初步讨论季节性储能在平抑长周期供需不平衡风险方面的作用。展开更多
文摘A number of piping components in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), cavitation, flashing, SPE (Solid Particle Erosion), LDIE (Liquid Droplet Impingement Erosion), etc. Those mechanisms may lead to thinning, leak, or rupture of the components. Due to the pipe ruptures caused by wall thinning in Surry unit 2 of USA in 1986 and in Mihama unit 3 of Japan in 1994, the pipe wall thinning management has emerged as one of the most important issues in nuclear power plants. To manage the pipe wall thinning in the secondary system, Korea has used a foreign program since 1996. As using the foreign country’s program for long term, it was necessary to improve from the perspective of the users. Accordingly, KEPCO-E & C has started to develop the 3D-based pipe wall thinning management program (ToSPACE, Total Solution for Piping And Component Engineering management) from eight years ago, and the development was successful. This paper describes the major functions included in ToSPACE program, such as 3D-based DB (Database) buildup, development of FAC and erosion evaluation theories, UT (Ultra-sonic Test) data reliability analysis, field connection with 3D, automatic establishment of long-term inspection plan, etc. ToSPACE program was developed to allow site engineers performing the selection of inspection quantity at each refueling outage, UT data reliability analysis, UT evaluation, determination of next inspection timing, identification of the inspecting and replacing components in 3D drawings, etc., to access easily.
文摘The paper presents the main features of transmission expansion problem (TEP). In accord with review the aims and influencing factors are defined. The competitive behaviors of market participants, transmission losses, discrete investment costs, various operating conditions are considered in the model. The model is a mixed-integer linear programming formulation for a static TEP in the competitive environment. The presented methodology is applied to six-node system. In order to point out efficiency of the model the results obtained are compared with traditional problem solution.
文摘受高比例新能源并网带来的波动性和间歇性影响,新型电力系统的长周期供需不平衡矛盾日益突出。该文将电力系统的长周期供需不平衡风险分为两部分:连续多日无风无光的极端天气场景和月电量供需不平衡风险。首先,选取连续多日无风无光的极端天气场景,提出基于条件风险价值理论(conditional value at risk,CvaR)的月电量不平衡风险评估模型。在此基础上,提出考虑长周期供需不平衡风险的新型电力系统规划方法,通过季节性储能等灵活性资源的优化配置,可有效提升电力系统的长周期平衡能力。最后,基于IEEE RTS-79算例分析论证了所提方法的有效性,并初步讨论季节性储能在平抑长周期供需不平衡风险方面的作用。