BACKGROUND In patients with type 2 diabetes mellitus(T2DM),the risk of hypoglycemia also occurs in at a time-in-range(TIR)of>70%.The hemoglobin glycation index(HGI)is considered the best single factor for predictin...BACKGROUND In patients with type 2 diabetes mellitus(T2DM),the risk of hypoglycemia also occurs in at a time-in-range(TIR)of>70%.The hemoglobin glycation index(HGI)is considered the best single factor for predicting hypoglycemia,and offers new perspectives for the individualized treatment of patients with well-controlled blood glucose levels that are easily ignored in clinical settings.All participants underwent a 7-days continuous glucose monitoring(CGM)using a retrospective CGM system.We obtained glycemic variability indices using the CGM system.We defined HGI as laboratory hemoglobin A1c minus the glucose management indicator.Patients were categorized into low HGI(HGI<0.5)and high HGI groups(HGI≥0.5)according to HGI median(0.5).Logistic regression and receiver operating characteristic curve analyses were used to determine the risk factors for hypoglycemia.RESULTS We included 129 subjects with T2DM(54.84±12.56 years,46%male)in the study.Median TIR score was 90%.The high HGI group exhibited lower TIR and greater time below range with higher hemoglobin A1c than the low HGI group;this suggests more glycemic excursions and an increased incidence of hypoglycemia in the high HGI group.Multivariate analyses revealed that mean blood glucose,standard deviation of blood glucose and HGI were independent risk factors for hypoglycemia.Receiver operating characteristic curve analysis indicated that the HGI was the best predictor of hypoglycemia.In addition,the optimal cut-off points for HGI,mean blood glucose,and standard deviation of blood glucose in predicting hypoglycemia were 0.5%,7.2 mmol/L and 1.4 mmol/L respectively.CONCLUSION High HGI was significantly associated with greater glycemic excursions and increased hypoglycemia in patients with TIR>70%.Our findings indicate that HGI is a reliable predictor of hypoglycemia in this population.展开更多
BACKGROUND Time in range(TIR),as a novel metric for glycemic control,has robust relevance with diabetic complications.Diabetic peripheral neuropathy(DPN)is characterized by sudomotor dysfunction.AIM To explore the rel...BACKGROUND Time in range(TIR),as a novel metric for glycemic control,has robust relevance with diabetic complications.Diabetic peripheral neuropathy(DPN)is characterized by sudomotor dysfunction.AIM To explore the relationship between TIR obtained from continuous glucose monitoring(CGM)and sudomotor function detected by SUDOSCAN in subjects with type 2 diabetes.METHODS The research enrolled 466 inpatients with type 2 diabetes.All subjects underwent 3-d CGM and SUDOSCAN.SUDOSCAN was assessed with electrochemical skin conductance in hands(HESC)and feet(FESC).Average feet ESC<60μS was defined as sudomotor dysfunction(+),otherwise it was sudomotor dysfunction(-).TIR refers to the percentage of time when blood glucose is between 3.9-10 mmol/L during 1 d period.RESULTS Among the enrolled subjects,135(28.97%)presented with sudomotor dysfunction.Patients with sudomotor dysfunction(+)showed a decreased level of TIR(P<0.001).Compared to the lowest tertile of TIR,the middle and the highest tertiles of TIR was associated with an obviously lower prevalence of sudomotor dysfunction(20.51%and 21.94%vs 44.52%)(P<0.001).In addition,with the increase of TIR,HESC and FESC increased(P<0.001).Regression analysis demonstrated that TIR was inversely and independently linked with the prevalence of sudomotor dysfunction after adjusting for confounding values(odds ratio=0.979,95%CI:0.971-0.987,P<0.001).CONCLUSION The tight glycemic control assessed by TIR is of vitally protective value for sudomotor dysfunction in type 2 diabetes mellitus.展开更多
The neutron count rate fluctuation reaches six orders of magnitude between the ohmic plasma scenario and high power of auxiliary heating on an experimental advanced superconducting tokamak(EAST).The measurement result...The neutron count rate fluctuation reaches six orders of magnitude between the ohmic plasma scenario and high power of auxiliary heating on an experimental advanced superconducting tokamak(EAST).The measurement result of neutron flux monitoring(NFM)is a significant feedback parameter related to the acquisition of radiation protection-related information and rapid fluctuations in neutron emission induced by plasma magnetohydrodynamic activity.Therefore,a wide range and high time resolution are required for the NFM system on EAST.To satisfy these requirements,a digital pulse signal acquisition and processing system with a wide dynamic range and fast response time was developed.The present study was conducted using a field-programmable gate array(FPGA)and peripheral component interconnect extension for instrument express(PXIe)platform.The digital dual measurement modes,which are composed of the pulse-counting mode and AC coupled square integral's Campbelling mode,were designed to expand the measurement range of the signal acquisition and processing system.The time resolution of the signal acquisition and processing system was improved from 10 to 1 ms owing to utilizing highspeed analog-to-digital converters(ADCs),a high-speed PXIe communication with a direct memory access(DMA)mode,and online data preprocessing technology of FPGA.The signal acquisition and processing system was tested experimentally in the EAST radiation field.The test results showed that the time resolution of NFM was improved to 1 ms,and the dynamic range of the neutron counts rate was expanded to more than 10^(6) counts per second.The Campbelling mode was calibrated using a multipoint average linear fitting method;subsequently,the fitting coefficient reached 0.9911.Therefore,the newly developed pulse signal acquisition and processing system ensures that the NFM system meets the requirements of high-parameter experiments conducted on EAST more effectively.展开更多
Environmental and geomorphological processes in the mountainous areas of Eastern Siberia is strongly conditioned by the thermal state of permafrost(permanently frozen ground).However,the scarce data about climate and ...Environmental and geomorphological processes in the mountainous areas of Eastern Siberia is strongly conditioned by the thermal state of permafrost(permanently frozen ground).However,the scarce data about climate and weak of permafrost study have led to the unclarity of mountain permafrost condition in this region.The increase in the mean annual air temperature over the past 50 years in the northeastern Siberia by various estimates is from 1.1℃to 3.3℃.So far,almost no information is available on the permafrost response to climatic changes in the region.The Kolyma Route(around 2000 km length),connecting Yakutsk and Magadan that crosses 5 climatic types and more than 10 permafrost landscapes,so it seems a suitable path for establishing basic(reference)monitoring sites.From 12 target boreholes,on the first stage 5 boreholes up to 30 m in depth were drilled and instrumented for measuring temperature at sites adjacent to weather stations in the Verkhoyansk Range from 283 to 1288 m a.s.l.Here we present conception,purpose,and methods for permafrost study project with first preliminary results from the highest weather station of the East Siberia Mountain.The following research about geophysical investigations,permafrost landscape description,mapping and spatial modelling,numerical computing,physical modelling of permafrost thickness might be initiated by the Eastern Siberia Permafrost Transect(ESPT)-project.展开更多
·AIM:To elucidate the relationship between macular sensitivity and time in range(TIR)obtained from continuous glucose monitoring(CGM)measures in diabetic patients with or without diabetic retinopathy(DR).·ME...·AIM:To elucidate the relationship between macular sensitivity and time in range(TIR)obtained from continuous glucose monitoring(CGM)measures in diabetic patients with or without diabetic retinopathy(DR).·METHODS:This was a cross-sectional study including 100 eyes of non-DR patients and 60 eyes of DR patients.An advanced microperimetry was used to quantitate the retinal mean sensitivity(MS)and fixation stability in central macula.TIR of 3.9-10.0 mmol/L was evaluated with CGM.Pearson coefficient analysis and multiple linear regression analysis were used to assess the correlation between TIR and retinal sensitivity.·RESULTS:In a comparison of non-DR patients,significant differences(P<0.05)were found in Hb A1c,TIR,coefficient of variation(CV),standard deviation of blood glucose(SDBG)and mean amplitude of glucose excursion(MAGE)values in DR patients.Besides,those DR patients had significantly poor best-corrected visual acuity(BCVA,log MAR,P=0.001).In terms of microperimetry parameters,retinal mean sensitivity(MS)and the percentages of fixation points located within 2°and 4°diameter circles were significantly decreased in the DR group(P<0.001,P<0.001,P=0.02,respectively).The bivariate contour ellipse area(BCEA)encompassing 68.2%,95.4%,99.6%of fixation points were all significantly increased in the DR group(P=0.01,P=0.006,P=0.01,respectively).Correlation analysis showed that MS were significantly correlated with Hb A1c(P=0.01).TIR was positively correlated with MS(r=0.23,P=0.01).SDBG was negatively correlated with MS(r=-0.24,P=0.01)but there was no correlation between CV and MAGE with MS(P>0.05).A multivariable linear regression analysis was performed to prove that TIR and SDBG were both independent risk factors for MS reduction in the DR group.·CONCLUSION:TIR is correlated with retinal MS reduction in DR patients,suggesting a useful option for evaluating DR progression.展开更多
To develop the dynamic monitoring algorithm of visual safety distance in highway, by using the highway video traffic monitoring system, the research platform of four kinds of terrain environment in plateau, mountainou...To develop the dynamic monitoring algorithm of visual safety distance in highway, by using the highway video traffic monitoring system, the research platform of four kinds of terrain environment in plateau, mountainous area, plain and coastal area is established. Results show that through the contrast between the sample data and visibility train of thought, based on the theory of mathematical morphology, expressway visibility dynamic monitoring image information system can be established. Based on the theory of the measurement of the basic formula of visibility, the dynamic model of the optimization is established, set up 200 meters distance visual observation target system, research visual range detection algorithm process.展开更多
基金Supported by Investigator-initiated Trial Research Funds from Eli Lilly and Co.and Amylin Pharmaceuticals,Inc.,No.A1570Natural Science Foundation of Guangdong Province,No.2018A030313915。
文摘BACKGROUND In patients with type 2 diabetes mellitus(T2DM),the risk of hypoglycemia also occurs in at a time-in-range(TIR)of>70%.The hemoglobin glycation index(HGI)is considered the best single factor for predicting hypoglycemia,and offers new perspectives for the individualized treatment of patients with well-controlled blood glucose levels that are easily ignored in clinical settings.All participants underwent a 7-days continuous glucose monitoring(CGM)using a retrospective CGM system.We obtained glycemic variability indices using the CGM system.We defined HGI as laboratory hemoglobin A1c minus the glucose management indicator.Patients were categorized into low HGI(HGI<0.5)and high HGI groups(HGI≥0.5)according to HGI median(0.5).Logistic regression and receiver operating characteristic curve analyses were used to determine the risk factors for hypoglycemia.RESULTS We included 129 subjects with T2DM(54.84±12.56 years,46%male)in the study.Median TIR score was 90%.The high HGI group exhibited lower TIR and greater time below range with higher hemoglobin A1c than the low HGI group;this suggests more glycemic excursions and an increased incidence of hypoglycemia in the high HGI group.Multivariate analyses revealed that mean blood glucose,standard deviation of blood glucose and HGI were independent risk factors for hypoglycemia.Receiver operating characteristic curve analysis indicated that the HGI was the best predictor of hypoglycemia.In addition,the optimal cut-off points for HGI,mean blood glucose,and standard deviation of blood glucose in predicting hypoglycemia were 0.5%,7.2 mmol/L and 1.4 mmol/L respectively.CONCLUSION High HGI was significantly associated with greater glycemic excursions and increased hypoglycemia in patients with TIR>70%.Our findings indicate that HGI is a reliable predictor of hypoglycemia in this population.
基金National Natural Science Foundation of China,No.81774134 and No.81873174Natural Science Foundation of Jiangsu Province of China,No.BK20150558 and No.BK20171331+2 种基金Postdoctoral Foundation of Jiangsu Province of China,No.1501120CJiangsu Province 333 Talent Funding Project,No.BRA2017595Young Medical Key Talents Project of Jiangsu Province,No.QNRC2016902.
文摘BACKGROUND Time in range(TIR),as a novel metric for glycemic control,has robust relevance with diabetic complications.Diabetic peripheral neuropathy(DPN)is characterized by sudomotor dysfunction.AIM To explore the relationship between TIR obtained from continuous glucose monitoring(CGM)and sudomotor function detected by SUDOSCAN in subjects with type 2 diabetes.METHODS The research enrolled 466 inpatients with type 2 diabetes.All subjects underwent 3-d CGM and SUDOSCAN.SUDOSCAN was assessed with electrochemical skin conductance in hands(HESC)and feet(FESC).Average feet ESC<60μS was defined as sudomotor dysfunction(+),otherwise it was sudomotor dysfunction(-).TIR refers to the percentage of time when blood glucose is between 3.9-10 mmol/L during 1 d period.RESULTS Among the enrolled subjects,135(28.97%)presented with sudomotor dysfunction.Patients with sudomotor dysfunction(+)showed a decreased level of TIR(P<0.001).Compared to the lowest tertile of TIR,the middle and the highest tertiles of TIR was associated with an obviously lower prevalence of sudomotor dysfunction(20.51%and 21.94%vs 44.52%)(P<0.001).In addition,with the increase of TIR,HESC and FESC increased(P<0.001).Regression analysis demonstrated that TIR was inversely and independently linked with the prevalence of sudomotor dysfunction after adjusting for confounding values(odds ratio=0.979,95%CI:0.971-0.987,P<0.001).CONCLUSION The tight glycemic control assessed by TIR is of vitally protective value for sudomotor dysfunction in type 2 diabetes mellitus.
基金supported by the Users with Excellence Program of the Hefei Science Center CAS (No. 2020HSC-UE012)
文摘The neutron count rate fluctuation reaches six orders of magnitude between the ohmic plasma scenario and high power of auxiliary heating on an experimental advanced superconducting tokamak(EAST).The measurement result of neutron flux monitoring(NFM)is a significant feedback parameter related to the acquisition of radiation protection-related information and rapid fluctuations in neutron emission induced by plasma magnetohydrodynamic activity.Therefore,a wide range and high time resolution are required for the NFM system on EAST.To satisfy these requirements,a digital pulse signal acquisition and processing system with a wide dynamic range and fast response time was developed.The present study was conducted using a field-programmable gate array(FPGA)and peripheral component interconnect extension for instrument express(PXIe)platform.The digital dual measurement modes,which are composed of the pulse-counting mode and AC coupled square integral's Campbelling mode,were designed to expand the measurement range of the signal acquisition and processing system.The time resolution of the signal acquisition and processing system was improved from 10 to 1 ms owing to utilizing highspeed analog-to-digital converters(ADCs),a high-speed PXIe communication with a direct memory access(DMA)mode,and online data preprocessing technology of FPGA.The signal acquisition and processing system was tested experimentally in the EAST radiation field.The test results showed that the time resolution of NFM was improved to 1 ms,and the dynamic range of the neutron counts rate was expanded to more than 10^(6) counts per second.The Campbelling mode was calibrated using a multipoint average linear fitting method;subsequently,the fitting coefficient reached 0.9911.Therefore,the newly developed pulse signal acquisition and processing system ensures that the NFM system meets the requirements of high-parameter experiments conducted on EAST more effectively.
基金supported by the Russian Science Foundation and Government of the Republic of Sakha(Yakutia)(project No 22-27-20073)。
文摘Environmental and geomorphological processes in the mountainous areas of Eastern Siberia is strongly conditioned by the thermal state of permafrost(permanently frozen ground).However,the scarce data about climate and weak of permafrost study have led to the unclarity of mountain permafrost condition in this region.The increase in the mean annual air temperature over the past 50 years in the northeastern Siberia by various estimates is from 1.1℃to 3.3℃.So far,almost no information is available on the permafrost response to climatic changes in the region.The Kolyma Route(around 2000 km length),connecting Yakutsk and Magadan that crosses 5 climatic types and more than 10 permafrost landscapes,so it seems a suitable path for establishing basic(reference)monitoring sites.From 12 target boreholes,on the first stage 5 boreholes up to 30 m in depth were drilled and instrumented for measuring temperature at sites adjacent to weather stations in the Verkhoyansk Range from 283 to 1288 m a.s.l.Here we present conception,purpose,and methods for permafrost study project with first preliminary results from the highest weather station of the East Siberia Mountain.The following research about geophysical investigations,permafrost landscape description,mapping and spatial modelling,numerical computing,physical modelling of permafrost thickness might be initiated by the Eastern Siberia Permafrost Transect(ESPT)-project.
文摘·AIM:To elucidate the relationship between macular sensitivity and time in range(TIR)obtained from continuous glucose monitoring(CGM)measures in diabetic patients with or without diabetic retinopathy(DR).·METHODS:This was a cross-sectional study including 100 eyes of non-DR patients and 60 eyes of DR patients.An advanced microperimetry was used to quantitate the retinal mean sensitivity(MS)and fixation stability in central macula.TIR of 3.9-10.0 mmol/L was evaluated with CGM.Pearson coefficient analysis and multiple linear regression analysis were used to assess the correlation between TIR and retinal sensitivity.·RESULTS:In a comparison of non-DR patients,significant differences(P<0.05)were found in Hb A1c,TIR,coefficient of variation(CV),standard deviation of blood glucose(SDBG)and mean amplitude of glucose excursion(MAGE)values in DR patients.Besides,those DR patients had significantly poor best-corrected visual acuity(BCVA,log MAR,P=0.001).In terms of microperimetry parameters,retinal mean sensitivity(MS)and the percentages of fixation points located within 2°and 4°diameter circles were significantly decreased in the DR group(P<0.001,P<0.001,P=0.02,respectively).The bivariate contour ellipse area(BCEA)encompassing 68.2%,95.4%,99.6%of fixation points were all significantly increased in the DR group(P=0.01,P=0.006,P=0.01,respectively).Correlation analysis showed that MS were significantly correlated with Hb A1c(P=0.01).TIR was positively correlated with MS(r=0.23,P=0.01).SDBG was negatively correlated with MS(r=-0.24,P=0.01)but there was no correlation between CV and MAGE with MS(P>0.05).A multivariable linear regression analysis was performed to prove that TIR and SDBG were both independent risk factors for MS reduction in the DR group.·CONCLUSION:TIR is correlated with retinal MS reduction in DR patients,suggesting a useful option for evaluating DR progression.
文摘To develop the dynamic monitoring algorithm of visual safety distance in highway, by using the highway video traffic monitoring system, the research platform of four kinds of terrain environment in plateau, mountainous area, plain and coastal area is established. Results show that through the contrast between the sample data and visibility train of thought, based on the theory of mathematical morphology, expressway visibility dynamic monitoring image information system can be established. Based on the theory of the measurement of the basic formula of visibility, the dynamic model of the optimization is established, set up 200 meters distance visual observation target system, research visual range detection algorithm process.