The following article has been retracted due to special reason of the author. This paper published in Vol.5 No. 2, 2013, has been removed from this site.
Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and ...Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.展开更多
Wireless sensor networks are susceptible to failures of nodes and links due to various physical or computational reasons.Some physical reasons include a very high temperature,a heavy load over a node,and heavy rain.Co...Wireless sensor networks are susceptible to failures of nodes and links due to various physical or computational reasons.Some physical reasons include a very high temperature,a heavy load over a node,and heavy rain.Computational reasons could be a third-party intrusive attack,communication conflicts,or congestion.Automated fault diagnosis has been a well-studied problem in the research community.In this paper,we present an automated fault diagnosis model that can diagnose multiple types of faults in the category of hard faults and soft faults.Our proposed model implements a feed-forward neural network trained with a hybrid metaheuristic algorithm that combines the principles of exploration and exploitation of the search space.The proposed methodology consists of different phases,such as a clustering phase,a fault detection and classification phase,and a decision and diagnosis phase.The implemented methodology can diagnose composite faults,such as hard permanent,soft permanent,intermittent,and transient faults for sensor nodes as well as for links.The proposed implementation can also classify different types of faulty behavior for both sensor nodes and links in the network.We present the obtained theoretical results and computational complexity of the implemented model for this particular study on automated fault diagnosis.The performance of the model is evaluated using simulations and experiments conducted using indoor and outdoor testbeds.展开更多
Recent developments of the wireless sensor network will revolutionize the way of remote monitoring in dif-ferent domains such as smart home and smart care, particularly remote cardiac care. Thus, it is challenging to ...Recent developments of the wireless sensor network will revolutionize the way of remote monitoring in dif-ferent domains such as smart home and smart care, particularly remote cardiac care. Thus, it is challenging to propose an energy efficient technique for automatic ECG diagnosis (AED) to be embedded into the wireless sensor. Due to the high resource requirements, classical AED methods are unsuitable for pervasive cardiac care (PCC) applications. This paper proposes an embedded real-time AED algorithm dedicated to PCC sys-tems. This AED algorithm consists of a QRS detector and a rhythm classifier. The QRS detector adopts the linear time-domain statistical and syntactic analysis method and the geometric feature extraction modeling technique. The rhythm classifier employs the self-learning expert system and the confidence interval method. Currently, this AED algorithm has been implemented and evaluated on the PCC system for 30 patients in the Gabriel Monpied hospital (CHRU of Clermont-Ferrand, France) and the MIT-BIH cardiac arrhythmias da-tabase. The overall results show that this energy efficient algorithm provides the same performance as the classical ones.展开更多
Diagnosis is of great importance to wireless sensor networks due to the nature of error prone sensor nodes and unreliable wireless links. The state-of-the-art diagnostic tools focus on certain types of faults, and the...Diagnosis is of great importance to wireless sensor networks due to the nature of error prone sensor nodes and unreliable wireless links. The state-of-the-art diagnostic tools focus on certain types of faults, and their performances are highly correlated with the networks they work with. The network administrators feel difficult in measuring the effectiveness of their diagnosis approaches and choosing appropriate tools so as to meet the reliability demand. In this work, we introduce the D-vector to characterize the property of a diagnosis approach. The D-vector has five dimensions, namely the degree of coupling, the granularity, the overhead, the tool reliability and the network reliability, quantifying and evaluating the effectiveness of current diagnostic tools in certain applications. We employ a skyline query algorithm to find out the most effective diagnosis approaches, i.e., skyline points(SPs), from five dimensions of all potential D-vectors. The selected skyline D-vector points can further guide the design of various diagnosis approaches. In our trace-driven simulations, we design and select tailored diagnostic tools for GreenOrbs, achieving high performance with relatively low overhead.展开更多
Wireless sensor networks have been applied in farmland and greenhouse.However,poor connectivity always results in a lot of nodes isolation in the network in a scenario.For this reason,the network connectivity is worth...Wireless sensor networks have been applied in farmland and greenhouse.However,poor connectivity always results in a lot of nodes isolation in the network in a scenario.For this reason,the network connectivity is worth considering to improve its quality,especially when the collected data cannot be sent to the data center because of the obstacles such as the growth of crop plants and weeds.Therefore,how to reduce the effect of crop growth on network connectivity,and enable the reliable transmission of field information,are the key problems to be resolved.To solve these problems,the method which adds long distance routing nodes to the WSN to reduce the deterioration of WSN connectivity during the growth of plants was proposed.To verify this method,the network connectivity of the deployed WSN was represented by the rank of connection matrix based on the graph theory.Consequently,the rank with value of 1 indicates a fully connected network.Moreover,the smaller value of rank means the better connectedness.In addition,the network simulator NS2 simulation results showed that the addition of long-distance backup routing nodes can improve the network connectivity.Furthermore,in experiments,using ZigBee-based wireless sensor network,a remote monitoring system in greenhouse was established,which can obtain environmental information for crops,e.g.temperature,humidity,light intensity and other environmental parameters as well as the wireless link quality especially.Experimental results showed adding of long-distance backup routing nodes can guarantee network connectivity in the region where received signal strength indication(RSSI)was poor,i.e.RSSI value was less than−100 dBm,and the energy was low.In conclusion,this method was essential to improve the connectivity of WSN,and the optimized method still needs further research.展开更多
Network fault management is crucial for a wireless sensor network(WSN) to maintain a normal running state because faults(e.g., link failures) often occur. The existing lossy link localization(LLL) approach usually inf...Network fault management is crucial for a wireless sensor network(WSN) to maintain a normal running state because faults(e.g., link failures) often occur. The existing lossy link localization(LLL) approach usually infers the most probable failed link set first, and then gives the fault hypothesis set. However, the inferred failed link set contains many possible failures that do not actually occur. That quantity of redundant information in the inferred set can pose a high computational burden on fault hypothesis inference, and consequently decreases the evaluation accuracy and increases the failure localization time. To address the issue, we propose the conditional information entropy based redundancy elimination(CIERE), a redundant lossy link elimination approach, which can eliminate most redundant information while reserving the important information. Specifically, we develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures and model the nondeterministic fault propagation. Through several rounds of mathematical derivations, the LLL problem is transformed to a set-covering problem. A heuristic algorithm is proposed to deduce the failure hypothesis set. We compare the performance of the proposed approach with those of existing LLL methods in simulation and on a real WSN, and validate the efficiency and effectiveness of the proposed approach.展开更多
Envelope analysis is an effective method for characterizing impulsive vibrations in wired condition monitoring(CM)systems. This paper depicts the implementation of envelope analysis on a wireless sensor node for obtai...Envelope analysis is an effective method for characterizing impulsive vibrations in wired condition monitoring(CM)systems. This paper depicts the implementation of envelope analysis on a wireless sensor node for obtaining a more convenient and reliable CM system. To maintain CM performances under the constraints of resources available in the cost effective Zigbee based wireless sensor network(WSN), a low cost cortex-M4 F microcontroller is employed as the core processor to implement the envelope analysis algorithm on the sensor node. The on-chip 12 bit analog-to-digital converter(ADC) working at 10 k Hz sampling rate is adopted to acquire vibration signals measured by a wide frequency band piezoelectric accelerometer. The data processing flow inside the processor is optimized to satisfy the large memory usage in implementing fast Fourier transform(FFT) and Hilbert transform(HT). Thus, the envelope spectrum can be computed from a data frame of 2048 points to achieve a frequency resolution acceptable for identifying the characteristic frequencies of different bearing faults. Experimental evaluation results show that the embedded envelope analysis algorithm can successfully diagnose the simulated bearing faults and the data transmission throughput can be reduced by at least 95% per frame compared with that of the raw data, allowing a large number of sensor nodes to be deployed in the network for real time monitoring.展开更多
文摘The following article has been retracted due to special reason of the author. This paper published in Vol.5 No. 2, 2013, has been removed from this site.
基金supported by the Postdoctoral Science Foundation of China under Grant No.2020M683736partly by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456+2 种基金partly by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038partly by the Haiyan foundation of Harbin Medical University Cancer Hospital under Grant No.JJMS2021-28partly by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19.
文摘Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.
文摘Wireless sensor networks are susceptible to failures of nodes and links due to various physical or computational reasons.Some physical reasons include a very high temperature,a heavy load over a node,and heavy rain.Computational reasons could be a third-party intrusive attack,communication conflicts,or congestion.Automated fault diagnosis has been a well-studied problem in the research community.In this paper,we present an automated fault diagnosis model that can diagnose multiple types of faults in the category of hard faults and soft faults.Our proposed model implements a feed-forward neural network trained with a hybrid metaheuristic algorithm that combines the principles of exploration and exploitation of the search space.The proposed methodology consists of different phases,such as a clustering phase,a fault detection and classification phase,and a decision and diagnosis phase.The implemented methodology can diagnose composite faults,such as hard permanent,soft permanent,intermittent,and transient faults for sensor nodes as well as for links.The proposed implementation can also classify different types of faulty behavior for both sensor nodes and links in the network.We present the obtained theoretical results and computational complexity of the implemented model for this particular study on automated fault diagnosis.The performance of the model is evaluated using simulations and experiments conducted using indoor and outdoor testbeds.
文摘Recent developments of the wireless sensor network will revolutionize the way of remote monitoring in dif-ferent domains such as smart home and smart care, particularly remote cardiac care. Thus, it is challenging to propose an energy efficient technique for automatic ECG diagnosis (AED) to be embedded into the wireless sensor. Due to the high resource requirements, classical AED methods are unsuitable for pervasive cardiac care (PCC) applications. This paper proposes an embedded real-time AED algorithm dedicated to PCC sys-tems. This AED algorithm consists of a QRS detector and a rhythm classifier. The QRS detector adopts the linear time-domain statistical and syntactic analysis method and the geometric feature extraction modeling technique. The rhythm classifier employs the self-learning expert system and the confidence interval method. Currently, this AED algorithm has been implemented and evaluated on the PCC system for 30 patients in the Gabriel Monpied hospital (CHRU of Clermont-Ferrand, France) and the MIT-BIH cardiac arrhythmias da-tabase. The overall results show that this energy efficient algorithm provides the same performance as the classical ones.
基金supported by the National Natural Science Foundation of China under Grant Nos.61190110,61325013,61103187,61170213,61228202,61170216,and 61422207the National Basic Research 973 Program of China under Grant No.2014CB347800+2 种基金the Natural Science Foundation of USA under Grant Nos.CNS-0832120,CNS-1035894,ECCS-1247944,and ECCS-1343306the Fundamental Research Funds for the Central Universities of China under Project No.2012jdgz02(Xi’an Jiaotong University)the Research Fund for the Doctoral Program of Higher Education of China under Project No.20130201120016
文摘Diagnosis is of great importance to wireless sensor networks due to the nature of error prone sensor nodes and unreliable wireless links. The state-of-the-art diagnostic tools focus on certain types of faults, and their performances are highly correlated with the networks they work with. The network administrators feel difficult in measuring the effectiveness of their diagnosis approaches and choosing appropriate tools so as to meet the reliability demand. In this work, we introduce the D-vector to characterize the property of a diagnosis approach. The D-vector has five dimensions, namely the degree of coupling, the granularity, the overhead, the tool reliability and the network reliability, quantifying and evaluating the effectiveness of current diagnostic tools in certain applications. We employ a skyline query algorithm to find out the most effective diagnosis approaches, i.e., skyline points(SPs), from five dimensions of all potential D-vectors. The selected skyline D-vector points can further guide the design of various diagnosis approaches. In our trace-driven simulations, we design and select tailored diagnostic tools for GreenOrbs, achieving high performance with relatively low overhead.
文摘Wireless sensor networks have been applied in farmland and greenhouse.However,poor connectivity always results in a lot of nodes isolation in the network in a scenario.For this reason,the network connectivity is worth considering to improve its quality,especially when the collected data cannot be sent to the data center because of the obstacles such as the growth of crop plants and weeds.Therefore,how to reduce the effect of crop growth on network connectivity,and enable the reliable transmission of field information,are the key problems to be resolved.To solve these problems,the method which adds long distance routing nodes to the WSN to reduce the deterioration of WSN connectivity during the growth of plants was proposed.To verify this method,the network connectivity of the deployed WSN was represented by the rank of connection matrix based on the graph theory.Consequently,the rank with value of 1 indicates a fully connected network.Moreover,the smaller value of rank means the better connectedness.In addition,the network simulator NS2 simulation results showed that the addition of long-distance backup routing nodes can improve the network connectivity.Furthermore,in experiments,using ZigBee-based wireless sensor network,a remote monitoring system in greenhouse was established,which can obtain environmental information for crops,e.g.temperature,humidity,light intensity and other environmental parameters as well as the wireless link quality especially.Experimental results showed adding of long-distance backup routing nodes can guarantee network connectivity in the region where received signal strength indication(RSSI)was poor,i.e.RSSI value was less than−100 dBm,and the energy was low.In conclusion,this method was essential to improve the connectivity of WSN,and the optimized method still needs further research.
基金Project supported by the National Natural Science Foundation of China(Nos.61401409 and 51577191)
文摘Network fault management is crucial for a wireless sensor network(WSN) to maintain a normal running state because faults(e.g., link failures) often occur. The existing lossy link localization(LLL) approach usually infers the most probable failed link set first, and then gives the fault hypothesis set. However, the inferred failed link set contains many possible failures that do not actually occur. That quantity of redundant information in the inferred set can pose a high computational burden on fault hypothesis inference, and consequently decreases the evaluation accuracy and increases the failure localization time. To address the issue, we propose the conditional information entropy based redundancy elimination(CIERE), a redundant lossy link elimination approach, which can eliminate most redundant information while reserving the important information. Specifically, we develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures and model the nondeterministic fault propagation. Through several rounds of mathematical derivations, the LLL problem is transformed to a set-covering problem. A heuristic algorithm is proposed to deduce the failure hypothesis set. We compare the performance of the proposed approach with those of existing LLL methods in simulation and on a real WSN, and validate the efficiency and effectiveness of the proposed approach.
文摘Envelope analysis is an effective method for characterizing impulsive vibrations in wired condition monitoring(CM)systems. This paper depicts the implementation of envelope analysis on a wireless sensor node for obtaining a more convenient and reliable CM system. To maintain CM performances under the constraints of resources available in the cost effective Zigbee based wireless sensor network(WSN), a low cost cortex-M4 F microcontroller is employed as the core processor to implement the envelope analysis algorithm on the sensor node. The on-chip 12 bit analog-to-digital converter(ADC) working at 10 k Hz sampling rate is adopted to acquire vibration signals measured by a wide frequency band piezoelectric accelerometer. The data processing flow inside the processor is optimized to satisfy the large memory usage in implementing fast Fourier transform(FFT) and Hilbert transform(HT). Thus, the envelope spectrum can be computed from a data frame of 2048 points to achieve a frequency resolution acceptable for identifying the characteristic frequencies of different bearing faults. Experimental evaluation results show that the embedded envelope analysis algorithm can successfully diagnose the simulated bearing faults and the data transmission throughput can be reduced by at least 95% per frame compared with that of the raw data, allowing a large number of sensor nodes to be deployed in the network for real time monitoring.