After research on a 2000t/h subcritical forced-circulation balanced ventilation were applied boiler and the structure and operation of its auxiliary system builds up this heat transfer model of a superheater's pip...After research on a 2000t/h subcritical forced-circulation balanced ventilation were applied boiler and the structure and operation of its auxiliary system builds up this heat transfer model of a superheater's pipe wall and analyze the effect of primary factors on the overtemperature of the pipe wall. Fault tree structure was used to uncover the multiplayer logic between the overtemperature of the superheater's pipe wall and the faults.展开更多
Fault diagnose of the roller overrunning clutch is a headache problem in engineering at home and abroad. This paper introduces a new method to solve the problem by using the wavelet transform to separate fault si gnal...Fault diagnose of the roller overrunning clutch is a headache problem in engineering at home and abroad. This paper introduces a new method to solve the problem by using the wavelet transform to separate fault si gnal and further analyzing the impact frequency. The signal local singularities under the wavelet transform are studied. According to the propagation features of modulus maximums of the fault signal and the noise under the wavelet transfor m different on the scales, and by use of the signal wavelet decomposition-recon struction algorithm, the clutch shell vibration acceleration signal is decompose d, denoised, and reconstructed.The signal-to-noise of the monitored signal imp roved greatly.The fault characteristic signal on time domain is positioned.The f ault characteristic frequency is picked up. Experiment shows that it is quite effective.展开更多
Up to present,the problem of the evaluation of fault diagnosability for nonlinear systems has been investigated by many researchers.However,no attempt has been done to evaluate the diagnosability of multiple faults oc...Up to present,the problem of the evaluation of fault diagnosability for nonlinear systems has been investigated by many researchers.However,no attempt has been done to evaluate the diagnosability of multiple faults occurring simultaneously for nonlinear systems.This paper proposes a method based on differential geometry theories to solve this problem.Then the evaluation of fault diagnosability for affine nonlinear systems with multiple faults occurring simultaneously is achieved.To deal with the effect of control laws on the evaluation results of fault diagnosability,a design scheme of the evaluation of fault diagnosability is proposed.Then the influence of uncertainties on the evaluation results of fault diagnosability for affine nonlinear systems with multiple faults occurring simultaneously is analyzed.The numerical simulation results are obtained to show the effectiveness of the proposed evaluation scheme of fault diagnosability.展开更多
Aiming at the problem that ICA can only be confined to the condition that the number of observed signals is larger than the number of source signals;a single channel blind source separation method combining EEMD, PCA ...Aiming at the problem that ICA can only be confined to the condition that the number of observed signals is larger than the number of source signals;a single channel blind source separation method combining EEMD, PCA and RobustICA is proposed. Through the eemd decomposition of the single-channel mechanical vibration observation signal the multidimensional IMF components are obtained, and the principal component analysis (PCA) is performed on the matrix of these IMF components. The number of principal components is determined and a new matrix is generated to satisfy the overdetermined blind source separation conditions, the new matrix input RobustICA, to achieve the separation of the source signal. Finally, the isolated signals are respectively analyzed by the envelope spectrum, the fault frequency is extracted, and the fault type is judged according to the prior knowledge. The experiment was carried out by using the simulation signal and the mechanical signal. The results show that the algorithm is effective and can accurately diagnose the location of mechanical fault.展开更多
All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At ...All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At the same time, Kohonen algo-rithm is used for fault diagnoses system based on fuzzy neural networks. Fuzzy arithmetic is inducted into neural networks tosolve uncertain diagnosis induced by uncertain knowledge. According to its self-association in the course of default diagnosis. thesystem is provided with non-supervise, self-organizing, self-learning, and has strong cluster ability and fast cluster velocity.展开更多
Petri net model is applied to diagnose the permanent fault of hydraulic system within the framework of interpreted Petri net. The permanent fault is described as redundant structure of the model. A definition and a th...Petri net model is applied to diagnose the permanent fault of hydraulic system within the framework of interpreted Petri net. The permanent fault is described as redundant structure of the model. A definition and a theorem are proposed to determine the diagnosability of the hydraulic system. The relations bwtween the diagnosability and other structure properties are also discussed. An example of actual hydraulic system is presented and its permanent fault can be diagnosed by the proposed method efficiently.展开更多
System-level fault identification is a key subject for maintaining the reliability of multiprocessor interconnected systems. This task requires fast and accurate inferences based on big volume of data, and the problem...System-level fault identification is a key subject for maintaining the reliability of multiprocessor interconnected systems. This task requires fast and accurate inferences based on big volume of data, and the problem of fault identification in an unstructured graph has been proved to be NP-hard (non-deterministic polynomial-time hard). In this paper, we adopt the PMC diagnostic model (first proposed by Preparata, Metze, and Chien) as the foundation of point-to-point probing technology, and a system contains only restricted-faults if every of its fault-free units has at least one fault-free neighbor. Under this condition we propose an efficient method of identifying restricted-faults in the folded hypercube, which is a promising alternative to the popular hypercube topology.展开更多
This paper describes, by means of a Voronoi hypersphere, the nearest neighbor relations of all the feature submatrices in the fault classification space and analyses the deviation disturbance angles between fault feat...This paper describes, by means of a Voronoi hypersphere, the nearest neighbor relations of all the feature submatrices in the fault classification space and analyses the deviation disturbance angles between fault feature submatrices and a k-dimension unitary matrix of the measured voltage change matrix. With the above two concepts, this paper discusses the diagnos-ability in the fault classification approach. The paper also classifies and defines the fault diagnosis problems. Finally, the paper derives the corresponding necessary and sufficient conditions for correct location of faults.展开更多
对装备中具体故障进行可诊断性评估,可以量化地表明故障被诊断的难易程度。针对故障可诊断性评价方法中存在的不客观及度量方法选择不恰当的问题,提出一种基于动态时间规整(Dynamic Time Warping,DTW)的时序距离度量方法。定义可诊断性...对装备中具体故障进行可诊断性评估,可以量化地表明故障被诊断的难易程度。针对故障可诊断性评价方法中存在的不客观及度量方法选择不恰当的问题,提出一种基于动态时间规整(Dynamic Time Warping,DTW)的时序距离度量方法。定义可诊断性评估模型,从实际系统中抽取系统的结构、信号、测试、故障模式4种要素,为故障可诊断性评估工作的开展打下基础。摒弃传统的从信号中提取特征进行相似性度量的做法,将信号看做时序序列,基于DTW方法衡量不同状态下各信号之间的相似程度,作为故障可诊断性的评估依据。使用动量轮系统对新方法进行仿真实验,仿真结果表明新方法在进行可诊断性评估方面具有客观性和有效性。展开更多
文摘After research on a 2000t/h subcritical forced-circulation balanced ventilation were applied boiler and the structure and operation of its auxiliary system builds up this heat transfer model of a superheater's pipe wall and analyze the effect of primary factors on the overtemperature of the pipe wall. Fault tree structure was used to uncover the multiplayer logic between the overtemperature of the superheater's pipe wall and the faults.
文摘Fault diagnose of the roller overrunning clutch is a headache problem in engineering at home and abroad. This paper introduces a new method to solve the problem by using the wavelet transform to separate fault si gnal and further analyzing the impact frequency. The signal local singularities under the wavelet transform are studied. According to the propagation features of modulus maximums of the fault signal and the noise under the wavelet transfor m different on the scales, and by use of the signal wavelet decomposition-recon struction algorithm, the clutch shell vibration acceleration signal is decompose d, denoised, and reconstructed.The signal-to-noise of the monitored signal imp roved greatly.The fault characteristic signal on time domain is positioned.The f ault characteristic frequency is picked up. Experiment shows that it is quite effective.
基金the Natural Science Foundation of Fujian Province,China(2019J05024)the Education Department Foundation of Fujian Province,China(JAT170091).
文摘Up to present,the problem of the evaluation of fault diagnosability for nonlinear systems has been investigated by many researchers.However,no attempt has been done to evaluate the diagnosability of multiple faults occurring simultaneously for nonlinear systems.This paper proposes a method based on differential geometry theories to solve this problem.Then the evaluation of fault diagnosability for affine nonlinear systems with multiple faults occurring simultaneously is achieved.To deal with the effect of control laws on the evaluation results of fault diagnosability,a design scheme of the evaluation of fault diagnosability is proposed.Then the influence of uncertainties on the evaluation results of fault diagnosability for affine nonlinear systems with multiple faults occurring simultaneously is analyzed.The numerical simulation results are obtained to show the effectiveness of the proposed evaluation scheme of fault diagnosability.
文摘Aiming at the problem that ICA can only be confined to the condition that the number of observed signals is larger than the number of source signals;a single channel blind source separation method combining EEMD, PCA and RobustICA is proposed. Through the eemd decomposition of the single-channel mechanical vibration observation signal the multidimensional IMF components are obtained, and the principal component analysis (PCA) is performed on the matrix of these IMF components. The number of principal components is determined and a new matrix is generated to satisfy the overdetermined blind source separation conditions, the new matrix input RobustICA, to achieve the separation of the source signal. Finally, the isolated signals are respectively analyzed by the envelope spectrum, the fault frequency is extracted, and the fault type is judged according to the prior knowledge. The experiment was carried out by using the simulation signal and the mechanical signal. The results show that the algorithm is effective and can accurately diagnose the location of mechanical fault.
文摘All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At the same time, Kohonen algo-rithm is used for fault diagnoses system based on fuzzy neural networks. Fuzzy arithmetic is inducted into neural networks tosolve uncertain diagnosis induced by uncertain knowledge. According to its self-association in the course of default diagnosis. thesystem is provided with non-supervise, self-organizing, self-learning, and has strong cluster ability and fast cluster velocity.
基金Supported by the Beijing Education Committee Cooperation Building Foundation(XK100070532)
文摘Petri net model is applied to diagnose the permanent fault of hydraulic system within the framework of interpreted Petri net. The permanent fault is described as redundant structure of the model. A definition and a theorem are proposed to determine the diagnosability of the hydraulic system. The relations bwtween the diagnosability and other structure properties are also discussed. An example of actual hydraulic system is presented and its permanent fault can be diagnosed by the proposed method efficiently.
基金supported in part by the NSC under Grand No.NSC102-2221-E-468-018
文摘System-level fault identification is a key subject for maintaining the reliability of multiprocessor interconnected systems. This task requires fast and accurate inferences based on big volume of data, and the problem of fault identification in an unstructured graph has been proved to be NP-hard (non-deterministic polynomial-time hard). In this paper, we adopt the PMC diagnostic model (first proposed by Preparata, Metze, and Chien) as the foundation of point-to-point probing technology, and a system contains only restricted-faults if every of its fault-free units has at least one fault-free neighbor. Under this condition we propose an efficient method of identifying restricted-faults in the folded hypercube, which is a promising alternative to the popular hypercube topology.
文摘This paper describes, by means of a Voronoi hypersphere, the nearest neighbor relations of all the feature submatrices in the fault classification space and analyses the deviation disturbance angles between fault feature submatrices and a k-dimension unitary matrix of the measured voltage change matrix. With the above two concepts, this paper discusses the diagnos-ability in the fault classification approach. The paper also classifies and defines the fault diagnosis problems. Finally, the paper derives the corresponding necessary and sufficient conditions for correct location of faults.
文摘对装备中具体故障进行可诊断性评估,可以量化地表明故障被诊断的难易程度。针对故障可诊断性评价方法中存在的不客观及度量方法选择不恰当的问题,提出一种基于动态时间规整(Dynamic Time Warping,DTW)的时序距离度量方法。定义可诊断性评估模型,从实际系统中抽取系统的结构、信号、测试、故障模式4种要素,为故障可诊断性评估工作的开展打下基础。摒弃传统的从信号中提取特征进行相似性度量的做法,将信号看做时序序列,基于DTW方法衡量不同状态下各信号之间的相似程度,作为故障可诊断性的评估依据。使用动量轮系统对新方法进行仿真实验,仿真结果表明新方法在进行可诊断性评估方面具有客观性和有效性。