The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, ...The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.展开更多
According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The fo...According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.展开更多
The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development o...The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development of oil industry , The risk assessment of oil industry has many subjects worthy to be studied.The major purpose of the paper is to research the risk cases of long-distance oil pipeline engineering in Ganshu and Shaanxi provinces.展开更多
Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation...Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.展开更多
For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention....For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.展开更多
A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model . The characteristic method of transient simulation is coupled with the Extended Kalman Filt...A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model . The characteristic method of transient simulation is coupled with the Extended Kalman Filter to estimate the system state where the only observed data are inlet and outlet flow rate and pressure. Because EKF has a time variant track under the non-stationary stochastic process with additive Gaussian noise, the high sensitivity of RTTM to non-stationary operating condition is reduced. A leak location recursion estimation formula is presented based on the real time observed data. The results of 27 groups of test data indicate that the procedure presented is sensitive to a wide range of detectable leak sizes and has a low average relative error of leak location .展开更多
A new quantitative risk assessment method for hot work is proposed based on the analytic hierarchy process(AHP)and fuzzy comprehensive evaluation(FCE).It can help pipeline companies realize the risk management of hot ...A new quantitative risk assessment method for hot work is proposed based on the analytic hierarchy process(AHP)and fuzzy comprehensive evaluation(FCE).It can help pipeline companies realize the risk management of hot work and further ensure the safe operation of oil and gas pipelines.Taking one natural gas pipeline in China as an example,this paper evaluates the risk of a single hot work in the spring of one natural gas pipeline in a high consequence region.First of all,the risk factors are determined with reference to the job safety analysis(JSA),and then experts were invited to fill out a questionnaire to collect their opinions.According to the results of the questionnaire,AHP is used to calculate the weight coefficients of the evaluation indicators,and FCE is used to evaluate the risk level of hot work.After calculation,the comprehensive risk score of hot work is 40.888.It belongs to a"general risk".This method can not only quantitatively evaluate the risk levels of hot work,but also reasonably sort the importance of various risk factors.It is helpful for the effective management of hot work and provides suggestions for implementing control measures.展开更多
基金Hi-Tech Research and Development Program of China (863 Program)(2002AA601140)
文摘The extensively built long-distance water transmission pipelines have become the main water sources for urban areas. To ensure the reliability and safety of the water supply, from the viewpoint of overall management, it would be necessary to establish a system of information management for the pipeline. The monitoring, calculating and analyzing functions of the system serve to give controlling instructions and safe operating rules to the automatic equipment and technician, making sure the resistance coefficient distribution along the pipeline is reasonable; the hydraulic state transition is smooth when operating conditions change or water supply accidents occur, avoiding the damage of water hammer. This paper covered the composition structures of the information management system of long-distance water transmission pipelines and the functions of the subsystems, and finally elaborated on the approaches and steps of building a mathematics model for the analysis of dynamic hydraulic status.
文摘According to the engineering investigation of long-distance oil and gas pipelines, the criterions and measures of route selection are drawn as follows: the flat landform is the first choice in route alignment. The foot of mountain is the first choice when the route passes by the valley. The route should pass by but the shady and deposited slope and not in sunny and erosive slope as possible as it can. The pipeline should be vertical to contour climbing and descending the mountain except steep slope. Tunnel can be used in crossing foothill. Perpendicularly traversing the river is better than beveling; the worst choice is to put the pipeline along the river. Bypass is the best choice in karsts area. The order of route selection should be pre-choosing, investigation, optimization and adjustment.
文摘The oilfield construction and long-distance oil pipeline engineering has been developed extensively in China. The risk assessment of oil industry will, however, be an important objective to cope with the development of oil industry , The risk assessment of oil industry has many subjects worthy to be studied.The major purpose of the paper is to research the risk cases of long-distance oil pipeline engineering in Ganshu and Shaanxi provinces.
基金supported by the National High Technology Research and Development Programof China(863 Program,Grant No.2006AA09A105)
文摘Pipes inevitably encounter high ambient pressure and bending moment during the deepwater pipe-laying process,which can lead to elliptical buckling and even deterioration failure.For the safety of pipe-laying operation,available formulas for the pipe stability are established on the basis of the assumption of uniform deformation along the tube length and symmetrical buckling.This method can predict the nonlinear response of elliptical collapse of steel circular tubes for different ratios of diameter to thickness(D/t)under pure bending or combined bending and external pressure.In these formulas,the strain-displacement relationship is deduced from the nonlinear ring theory,and the Ramberg-Osgood constitutive model is applied to simulate the inelastic material behavior.Meanwhile,the principle of virtual work is adopted to derive the equilibrium equations.A set of equations is solved by the Newton-Raphson method,and the iterative scheme contains nested iteration for the constitutive relation.In order to check the effectiveness of this theoretical method,illustrative examples are presented in this paper.Besides,the numerical simulation is carried out by use of ANSYS.A comparison of the results shows that the theoretical method can provide reasonable prediction for engineering practice.
基金supported by the National Natural Science Foundation of China(Grants No.52179062 and 51879087).
文摘For a water supply system with long-distance diversion pipelines, in addition to the water hammer problems that occur beyond pumps, the safety of the water diversion pipeline in front of pumps also deserves attention. In this study, a water hammer protection scheme combined with an overflow surge tank and a regulating valve was developed. A mathematical model of the overflow surge tank was developed, and an analytical formula for the height of the overflow surge tank was derived. Furthermore, a practical water supply project was used to evaluate the feasibility of the combined protection scheme and analyze the sensitivity of valve regulation rules. The results showed that the combined protection scheme effectively reduced the height of the surge tank, lessened the difficulties related to construction, and reduced the necessary financial investment for the project. The two-stage closing rule articulated as fast first and then slow could minimize the overflow volume of the surge tank when the power failure occurred, while the two-stage opening rule articulated as slow first and then fast could be more conducive to the safety of the water supply system when the pump started up.
文摘A practical approach is discussed for sub-sea pipeline monitoring and leak detection based on the real time transient model . The characteristic method of transient simulation is coupled with the Extended Kalman Filter to estimate the system state where the only observed data are inlet and outlet flow rate and pressure. Because EKF has a time variant track under the non-stationary stochastic process with additive Gaussian noise, the high sensitivity of RTTM to non-stationary operating condition is reduced. A leak location recursion estimation formula is presented based on the real time observed data. The results of 27 groups of test data indicate that the procedure presented is sensitive to a wide range of detectable leak sizes and has a low average relative error of leak location .
文摘A new quantitative risk assessment method for hot work is proposed based on the analytic hierarchy process(AHP)and fuzzy comprehensive evaluation(FCE).It can help pipeline companies realize the risk management of hot work and further ensure the safe operation of oil and gas pipelines.Taking one natural gas pipeline in China as an example,this paper evaluates the risk of a single hot work in the spring of one natural gas pipeline in a high consequence region.First of all,the risk factors are determined with reference to the job safety analysis(JSA),and then experts were invited to fill out a questionnaire to collect their opinions.According to the results of the questionnaire,AHP is used to calculate the weight coefficients of the evaluation indicators,and FCE is used to evaluate the risk level of hot work.After calculation,the comprehensive risk score of hot work is 40.888.It belongs to a"general risk".This method can not only quantitatively evaluate the risk levels of hot work,but also reasonably sort the importance of various risk factors.It is helpful for the effective management of hot work and provides suggestions for implementing control measures.