The oil and gas (O&G) industry on the Norwegian continental shelf (NCS) leads the world in terms of the number of subsea O&G installations. Ensuring the dependability of these assets is critical. Non-intrusive i...The oil and gas (O&G) industry on the Norwegian continental shelf (NCS) leads the world in terms of the number of subsea O&G installations. Ensuring the dependability of these assets is critical. Non-intrusive inspection, maintenance and repair (IMR) services are therefore needed to reduce risks. These services are planned and executed using a mono-hull offshore vessel complete with remotely operated vehicles (ROVs), a module handling system and an active heave compensated crane. Vessel time is shared between competing jobs, using a prioritized forward-looking schedule. Extension in planned job duration may have an impact on O&G production, service costs and health, safety, and environmental (HSE) risks. This paper maps factors influencing the job schedule efficiency. The influence factors are identified through reviews of literature as well as interviews with experts in one of the large IMR subsea service providers active on the Norwegian Continental Shelf. The findings show that the most obvious factors are weather disruption and water depth. Other factors include job complexity, job uncertainty, IMR equipment availability, as well as the mix of job complexity.展开更多
The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a nov...The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.展开更多
Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and th...Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.展开更多
In this study,we introduce an integrated schedule of order picking and delivery for instant delivery.Order picking,including order batching and picking sequencing,is scheduled online under real-time order arrival,whic...In this study,we introduce an integrated schedule of order picking and delivery for instant delivery.Order picking,including order batching and picking sequencing,is scheduled online under real-time order arrival,which integrates order delivery by depicting order location dispersion in an online order picking strategy.Order delivery,including delivery person assignment and route planning,is modeled to minimize the total duration of order fulfillment by considering the influence of the order picking completion time.A rule-based online order picking strategy is established,and a customized ant colony optimization(ACO)algorithm is proposed to optimize order delivery.Experiments on 16 simulated instances of different scales demonstrate that our online order picking schedule considering order delivery outperforms existing approaches and that the customized ACO algorithm for order delivery is effective.展开更多
This paper considers the uniform parallel machine scheduling problem with unequal release dates and delivery times to minimize the maximum completion time.For this NP-hard problem,the largest sum of release date,proce...This paper considers the uniform parallel machine scheduling problem with unequal release dates and delivery times to minimize the maximum completion time.For this NP-hard problem,the largest sum of release date,processing time and delivery time first rule is designed to determine a certain machine for each job,and the largest difference between delivery time and release date first rule is designed to sequence the jobs scheduled on the same machine,and then a novel algorithm for the scheduling problem is built.To evaluate the performance of the proposed algorithm,a lower bound for the problem is proposed.The accuracy of the proposed algorithm is tested based on the data with problem size varying from 200 jobs to 600 jobs.The computational results indicate that the average relative error between the proposed algorithm and the lower bound is only 0.667%,therefore the solutions obtained by the proposed algorithm are very accurate.展开更多
In the view of staff shortages and the huge inventory of products in the current market, we put forward a personnel scheduling model in the target of closing to the delivery date considering the parallelism. Then we d...In the view of staff shortages and the huge inventory of products in the current market, we put forward a personnel scheduling model in the target of closing to the delivery date considering the parallelism. Then we designed a scheduling algorithm based on genetic algorithm and proposed a flexible parallel decoding method which take full use of the personal capacity. Case study results indicate that the flexible personnel scheduling considering the order-shop scheduling, machine automatic capabilities and personnel flexible in the target of closing to the delivery date optimize the allocation of human resources, then maximize the efficiency.展开更多
本文针对一类广泛存在的分布式加工装配和车辆配送集成调度问题(Integrated Scheduling Problem of Distributed Production Assembly and Vehicle Delivery,ISP_DPAVD),以最小化运输和延迟惩罚总成本为优化目标,提出一种混合三维分布...本文针对一类广泛存在的分布式加工装配和车辆配送集成调度问题(Integrated Scheduling Problem of Distributed Production Assembly and Vehicle Delivery,ISP_DPAVD),以最小化运输和延迟惩罚总成本为优化目标,提出一种混合三维分布估计算法(Hybrid three-Dimensional Estimation of Distribution Algorithm,H3DEDA)进行求解.ISP_DPAVD包含两个耦合的子问题,即加工装配阶段子问题(子问题1)和车辆配送阶段子问题(子问题2).由于每个子问题1的解(部分解1)均会确定1个具体的子问题2,故ISP_DPAVD的解空间非常庞大.根据这一特点,在H3DEDA中,先设计结合邻域变换的启发式规则来快速获取子问题2的优良解,以实现子问题间的部分解耦并明显缩减搜索空间,再设计三维EDA引导的全局搜索和变邻域驱动的局部搜索来获取ISP_DPAVD的高质量解.通过在不同规模测试问题上的仿真实验和算法比较,验证了H3DEDA求解ISP_DPAVD的有效性.展开更多
外卖配取过程中实时订单的不断插入具有强烈的不确定性,需持续进行滚动优化以动态更新配取路径。动态条件下,有效地合并取餐与配送作业(dynamic order combination,DOC)可显著减少冗余路径。本文将动态配取路径规划问题转化为变长开放...外卖配取过程中实时订单的不断插入具有强烈的不确定性,需持续进行滚动优化以动态更新配取路径。动态条件下,有效地合并取餐与配送作业(dynamic order combination,DOC)可显著减少冗余路径。本文将动态配取路径规划问题转化为变长开放链滚动优化问题,并构建多目标滚动配取路径规划模型对DOC与节点排序进行集成决策。考虑滚动优化框架下紧前决策对紧后决策的调度影响,模型在兼顾配取效率和客户满意度的同时,考虑了基于look-forward的滚动调度后效性。针对该模型,本文基于NSGA-Ⅲ框架开发了多目标元启发式算法进行求解,并设计了基于插入限制规则的元胞数组解编码和混合PMX&SBX交叉方式以适应模型的复杂可行域结构。通过一系列的仿真实验,本文验证了所提出的模型和算法的有效性与优越性。展开更多
In this paper,we consider the parallel-machine customer order scheduling with delivery time and submodular rejection penalties.In this problem,we are given m dedicated machines in parallel and n customer orders.Each o...In this paper,we consider the parallel-machine customer order scheduling with delivery time and submodular rejection penalties.In this problem,we are given m dedicated machines in parallel and n customer orders.Each order has a delivery time and consists of m product types and each product type should be manufactured on a dedicated machine.An order is either rejected,in which case a rejection penalty has to be paid,or accepted and manufactured on the m dedicated machines.The objective is to find a solution to minimize the sum of the maximum delivery completion time of the accepted orders and the penalty of the rejected orders which is determined by a submodular function.We design an LP rounding algorithm with approximation ratio of n+1 for this problem.展开更多
The hybrid flow shop group scheduling problem(HFGSP)with the delivery time windows has been widely studied owing to its better flexibility and suitability for the current just-in-time production mode.However,there are...The hybrid flow shop group scheduling problem(HFGSP)with the delivery time windows has been widely studied owing to its better flexibility and suitability for the current just-in-time production mode.However,there are several unresolved challenges in problem modeling and algorithmic design tailored for HFGSP.In our study,we place emphasis on the constraint of timeliness.Therefore,this paper first constructs a mixed integer linear programming model of HFGSP with sequence-dependent setup time and delivery time windows to minimize the total weighted earliness and tardiness(TWET).Then a penalty groups-assisted iterated greedy integrating idle time insertion(PG IG ITI)is proposed to solve the above problem.In the PG IG ITI,a double decoding strategy is proposed based on the earliest available machine rule and the idle time insertion rule to calculate the TWET value.Subsequently,to reduce the amount of computation,a skip-based destruction and reconstruction strategy is designed,and a penalty groups-assisted local search is proposed to further improve the quality of the solution by disturbing the penalized groups,i.e.,early and tardy groups.Finally,through comprehensive statistical experiments on 270 test instances,the results prove that the proposed algorithm is effective compared to four state-of-the-art algorithms.展开更多
文摘The oil and gas (O&G) industry on the Norwegian continental shelf (NCS) leads the world in terms of the number of subsea O&G installations. Ensuring the dependability of these assets is critical. Non-intrusive inspection, maintenance and repair (IMR) services are therefore needed to reduce risks. These services are planned and executed using a mono-hull offshore vessel complete with remotely operated vehicles (ROVs), a module handling system and an active heave compensated crane. Vessel time is shared between competing jobs, using a prioritized forward-looking schedule. Extension in planned job duration may have an impact on O&G production, service costs and health, safety, and environmental (HSE) risks. This paper maps factors influencing the job schedule efficiency. The influence factors are identified through reviews of literature as well as interviews with experts in one of the large IMR subsea service providers active on the Norwegian Continental Shelf. The findings show that the most obvious factors are weather disruption and water depth. Other factors include job complexity, job uncertainty, IMR equipment availability, as well as the mix of job complexity.
基金the financial support of the National Natural Science Foundation of China(No.52102453)。
文摘The weapon transportation support scheduling problem on aircraft carrier deck is the key to restricting the sortie rate and combat capability of carrier-based aircraft.This paper studies the problem and presents a novel solution architecture.Taking the interference of the carrier-based aircraft deck layout on the weapon transportation route and precedence constraint into consideration,a mixed integer formulation is established to minimize the total objective,which is constituted of makespan,load variance and accumulative transfer time of support unit.Solution approach is developed for the model.Firstly,based on modeling the carrier aircraft parked on deck as convex obstacles,the path library of weapon transportation is constructed through visibility graph and Warshall-Floyd methods.We then propose a bi-population immune algorithm in which a population-based forward/backward scheduling technique,local search schemes and a chaotic catastrophe operator are embedded.Besides,the randomkey solution representation and serial scheduling generation scheme are adopted to conveniently obtain a better solution.The Taguchi method is additionally employed to determine key parameters of the algorithm.Finally,on a set of generated realistic instances,we demonstrate that the proposed algorithm outperforms all compared algorithms designed for similar optimization problems and can significantly improve the efficiency,and that the established model and the bi-population immune algorithm can effectively respond to the weapon support requirements of carrier-based aircraft under different sortie missions.
文摘Dynamic exclusive pickup and delivery problem with time windows (DE-PDPTW), aspecial dynamic vehicle scheduling problem, is proposed. Its mathematical description is given andits static properties are analyzed, and then the problem is simplified asthe asymmetrical travelingsalesman problem with time windows. The rolling horizon scheduling algorithm (RHSA) to solve thisdynamic problem is proposed. By the rolling of time horizon, the RHSA can adapt to the problem'sdynamic change and reduce the computation time by dealing with only part of the customers in eachrolling time horizon. Then, its three factors, the current customer window, the scheduling of thecurrent customer window and the rolling strategy, are analyzed. The test results demonstrate theeffectiveness of the RHSA to solve the dynamic vehicle scheduling problem.
基金supported by the National Natural Science Foundation of China(72032001,71972071)the Ministry of Education,Humanities and Social Sciences Research Planning Foundation(21YJA630057).
文摘In this study,we introduce an integrated schedule of order picking and delivery for instant delivery.Order picking,including order batching and picking sequencing,is scheduled online under real-time order arrival,which integrates order delivery by depicting order location dispersion in an online order picking strategy.Order delivery,including delivery person assignment and route planning,is modeled to minimize the total duration of order fulfillment by considering the influence of the order picking completion time.A rule-based online order picking strategy is established,and a customized ant colony optimization(ACO)algorithm is proposed to optimize order delivery.Experiments on 16 simulated instances of different scales demonstrate that our online order picking schedule considering order delivery outperforms existing approaches and that the customized ACO algorithm for order delivery is effective.
基金supported by the National Natural Science Foundation of China (7087103290924021+2 种基金70971035)the National High Technology Research and Development Program of China (863 Program) (2008AA042901)Anhui Provincial Natural Science Foundation (11040606Q27)
文摘This paper considers the uniform parallel machine scheduling problem with unequal release dates and delivery times to minimize the maximum completion time.For this NP-hard problem,the largest sum of release date,processing time and delivery time first rule is designed to determine a certain machine for each job,and the largest difference between delivery time and release date first rule is designed to sequence the jobs scheduled on the same machine,and then a novel algorithm for the scheduling problem is built.To evaluate the performance of the proposed algorithm,a lower bound for the problem is proposed.The accuracy of the proposed algorithm is tested based on the data with problem size varying from 200 jobs to 600 jobs.The computational results indicate that the average relative error between the proposed algorithm and the lower bound is only 0.667%,therefore the solutions obtained by the proposed algorithm are very accurate.
基金Supported by Anhui Provincial Natural Science Foundation (1308085MF102)Fundamental Research Funds for the Central Universities(2012HGBZ0195)
文摘In the view of staff shortages and the huge inventory of products in the current market, we put forward a personnel scheduling model in the target of closing to the delivery date considering the parallelism. Then we designed a scheduling algorithm based on genetic algorithm and proposed a flexible parallel decoding method which take full use of the personal capacity. Case study results indicate that the flexible personnel scheduling considering the order-shop scheduling, machine automatic capabilities and personnel flexible in the target of closing to the delivery date optimize the allocation of human resources, then maximize the efficiency.
文摘本文针对一类广泛存在的分布式加工装配和车辆配送集成调度问题(Integrated Scheduling Problem of Distributed Production Assembly and Vehicle Delivery,ISP_DPAVD),以最小化运输和延迟惩罚总成本为优化目标,提出一种混合三维分布估计算法(Hybrid three-Dimensional Estimation of Distribution Algorithm,H3DEDA)进行求解.ISP_DPAVD包含两个耦合的子问题,即加工装配阶段子问题(子问题1)和车辆配送阶段子问题(子问题2).由于每个子问题1的解(部分解1)均会确定1个具体的子问题2,故ISP_DPAVD的解空间非常庞大.根据这一特点,在H3DEDA中,先设计结合邻域变换的启发式规则来快速获取子问题2的优良解,以实现子问题间的部分解耦并明显缩减搜索空间,再设计三维EDA引导的全局搜索和变邻域驱动的局部搜索来获取ISP_DPAVD的高质量解.通过在不同规模测试问题上的仿真实验和算法比较,验证了H3DEDA求解ISP_DPAVD的有效性.
文摘外卖配取过程中实时订单的不断插入具有强烈的不确定性,需持续进行滚动优化以动态更新配取路径。动态条件下,有效地合并取餐与配送作业(dynamic order combination,DOC)可显著减少冗余路径。本文将动态配取路径规划问题转化为变长开放链滚动优化问题,并构建多目标滚动配取路径规划模型对DOC与节点排序进行集成决策。考虑滚动优化框架下紧前决策对紧后决策的调度影响,模型在兼顾配取效率和客户满意度的同时,考虑了基于look-forward的滚动调度后效性。针对该模型,本文基于NSGA-Ⅲ框架开发了多目标元启发式算法进行求解,并设计了基于插入限制规则的元胞数组解编码和混合PMX&SBX交叉方式以适应模型的复杂可行域结构。通过一系列的仿真实验,本文验证了所提出的模型和算法的有效性与优越性。
基金the National Natural Science Foundation of China(No.11971146)the Natural Science Foundation of Hebei Province of China(Nos.A2019205089 and A2019205092)+1 种基金Hebei Province Foundation for Returnees(No.CL201714)the Graduate Innovation Grant Program of Hebei Normal University(No.CXZZSS2022053).
文摘In this paper,we consider the parallel-machine customer order scheduling with delivery time and submodular rejection penalties.In this problem,we are given m dedicated machines in parallel and n customer orders.Each order has a delivery time and consists of m product types and each product type should be manufactured on a dedicated machine.An order is either rejected,in which case a rejection penalty has to be paid,or accepted and manufactured on the m dedicated machines.The objective is to find a solution to minimize the sum of the maximum delivery completion time of the accepted orders and the penalty of the rejected orders which is determined by a submodular function.We design an LP rounding algorithm with approximation ratio of n+1 for this problem.
基金This work was supported by the Natural Science Foundation of Shandong province(No.ZR2023MF022)National Natural Science Foundation of China(Nos.61973203,61803192,62106073,and 61966012)Guangyue Young Scholar Innovation Team of Liaocheng University(No.LCUGYTD2022-03).
文摘The hybrid flow shop group scheduling problem(HFGSP)with the delivery time windows has been widely studied owing to its better flexibility and suitability for the current just-in-time production mode.However,there are several unresolved challenges in problem modeling and algorithmic design tailored for HFGSP.In our study,we place emphasis on the constraint of timeliness.Therefore,this paper first constructs a mixed integer linear programming model of HFGSP with sequence-dependent setup time and delivery time windows to minimize the total weighted earliness and tardiness(TWET).Then a penalty groups-assisted iterated greedy integrating idle time insertion(PG IG ITI)is proposed to solve the above problem.In the PG IG ITI,a double decoding strategy is proposed based on the earliest available machine rule and the idle time insertion rule to calculate the TWET value.Subsequently,to reduce the amount of computation,a skip-based destruction and reconstruction strategy is designed,and a penalty groups-assisted local search is proposed to further improve the quality of the solution by disturbing the penalized groups,i.e.,early and tardy groups.Finally,through comprehensive statistical experiments on 270 test instances,the results prove that the proposed algorithm is effective compared to four state-of-the-art algorithms.