The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode f...The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode field distribution pattern is obtained through the different kinds of driving sources. It is found that the optical field mode is determined by waveguide structure and optical wavelength other than the driving source.According to the mode field distribution, the optimum coupling efficiency can be predicted. Compared with another numerical methods,the CPU-time and memory elements of computer used by FDTD are much less.展开更多
In this work, long-period waveguide grating-based tunable wavelength filters using organic–inorganic grafting poly(methyl methacrylate)(PMMA) materials are designed and fabricated by metal-cladding directly defin...In this work, long-period waveguide grating-based tunable wavelength filters using organic–inorganic grafting poly(methyl methacrylate)(PMMA) materials are designed and fabricated by metal-cladding directly defined technique.The thermal stabilities and optical properties of the organic–inorganic grafting PMMA core materials are analyzed. Structures and performance parameters of the waveguide gratings and self-electrode heaters are designed and simulated. The contrast of the filter is about 15 d B and the resonant wavelength can be tuned by different electric powers applied to the metal-cladding self-electrode heaters. The temperature sensitivity is 3.5 nm/℃ and the switching time is about 1 ms. The technique is very suitable for realizing the optoelectronic integrated wavelength-division-multiplexing systems.展开更多
Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers.In this work,a high-efficiency and complementary metal-oxide-semiconductor(CMOS) process com...Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers.In this work,a high-efficiency and complementary metal-oxide-semiconductor(CMOS) process compatible grating coupler is proposed.The poly-Si layer used as a gate in the CMOS metal-oxide-semiconductor field effect transistor(MOSFET) is combined with a normal fully etched grating coupler,which greatly enhances its coupling efficiency.With optimal structure parameters,a coupling efficiency can reach as high as ~ 70% at a wavelength of 1550 nm as indicated by simulation.From the angle of fabrication,all masks and etching steps are shared between MOSFETs and grating couplers,thereby making the high performance grating couplers easily integrated with CMOS circuits.Fabrication errors such as alignment shift are also simulated,showing that the device is quite tolerant in fabrication.展开更多
We present both design and experimental results for an As2S3 grating coupler on a thin film LiNbO3 substrate. A basic grating coupler structure is designed with coupling efficiency of 53% to a single mode fiber. A max...We present both design and experimental results for an As2S3 grating coupler on a thin film LiNbO3 substrate. A basic grating coupler structure is designed with coupling efficiency of 53% to a single mode fiber. A maximum simulated coupling efficiency of 78.8% is achieved, assuming a polymer bonding process. The basic structure was fabricated, and the coupling efficiency was measured to be at least 23.4% at 1540 nm. Some of the loss may be attributable to non-grating sources, such as waveguide tapers and testing fiber tails. A grating cavity was then measured using the grating couplers. The cavity waveguide propagation loss was 2.0 dB/cm. For a 400 nm thick As2S3 on 500 nm thin film LiNbO3 on insulator, the confinement factor in the LiNbO3 crystal is 82.3% when the As2S3 waveguide width is 400 nm, showing that As2S3-on-thin film LiNbO3 is an excellent candidate for thin film electro-optic applications.展开更多
We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75%coupling efficiency(CE) between single-mode fiber and silicon-on-insulator(SOI) waveguide thro...We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75%coupling efficiency(CE) between single-mode fiber and silicon-on-insulator(SOI) waveguide through 2D finite-different time-domain(FDTD) simulation.The proposed architecture has a uniform structure with no bottom reflection element or silicon overlay.The structure,including grating couplers,adiabatic tapers and interconnection waveguides can be fabricated on the SOI waveguide with only a single electron-beam lithography(ICP) step,which is CMOS-compatible.A relatively high coupling efficiency of 47.2%was obtained at a wavelength of 1562 nm.展开更多
We propose a novel structure and unique sensing mechanism bio-chemical sensor which is fabricated by a polymer long-period waveguide grating with the detection liquid directly as the waveguide cladding.Quantitative de...We propose a novel structure and unique sensing mechanism bio-chemical sensor which is fabricated by a polymer long-period waveguide grating with the detection liquid directly as the waveguide cladding.Quantitative detection is realized from analyzing the output absorption spectrum and resonant wavelength shift related to the liquid detection concentration.The proposed polymer long-period waveguide grating based liquid refractive-index sensor is developed experimentally,the high sensitivity of 1.01×10^4nm/RIU is achieved,and the temperature stability coefficient is 1.47nm/℃.Theoretically and experimentally,this work has been demonstrated to have potential application in chemical and biological detections and may provide an important technical support for solving today's increasingly serious civil problems such as food safety and drug safety, which will also have the important scientific significance and application prospects.展开更多
We present a theoretical analysis of corrugated long-period gratings in planar waveguides. In particular, we calculate the transmission spectra for both the TE and TM polarizations and highlight the polarization-indep...We present a theoretical analysis of corrugated long-period gratings in planar waveguides. In particular, we calculate the transmission spectra for both the TE and TM polarizations and highlight the polarization-independence conditions.展开更多
Long-period waveguide grating based filters have attracted attention due to their flexible fabrication,a variety of materials and structures,low back reflection,low insertion loss,and excellent performance in the tuni...Long-period waveguide grating based filters have attracted attention due to their flexible fabrication,a variety of materials and structures,low back reflection,low insertion loss,and excellent performance in the tuning range and temperature sensitivity.To our knowledge,for the first time,a two-segment polymer long-period waveguide grating was cascaded to implement a filter with a narrower bandwidth.Experimental results showed that the device had a maximum extinction ratio of 24 dB at 1577 nm,and the 12 dB bandwidth was 10 nm.The temperature sensitivity of the fabricated device was 1.79 nm/℃.展开更多
An ultra-small integrated photonic circuit has been proposed,which incorporates a high-quality-factor passive micro-ring resonator(MR) linked to a vertical grating coupler on a standard silicon-on-insulator(SOI) s...An ultra-small integrated photonic circuit has been proposed,which incorporates a high-quality-factor passive micro-ring resonator(MR) linked to a vertical grating coupler on a standard silicon-on-insulator(SOI) substrate.The experimental results demonstrate that the MR propagation loss is 0.532 dB/cm with a 10μm radius ring resonator,the intrinsic quality factor is as high as 202.000,the waveguide grating wavelength response curve is a 1 dB bandwidth of 40 nm at 1540 nm telecommunication wavelengths,and the measured fiber-to-fiber coupling loss is 10 dB.Furthermore,the resonator wavelength temperature dependence of the 450 nm wide micro-ring resonator is 54.1 pm/℃.Such vertical grating coupler and low loss MR-integrated components greatly promote a key element in biosensors and high-speed interconnect communication applications.展开更多
文摘The scalar two-dimensional finite difference time domain (FDTD) method is applied to simulate the mode field distribution of TE 0 of the waveguide grating coupler. Computer simulation shows that the same stable mode field distribution pattern is obtained through the different kinds of driving sources. It is found that the optical field mode is determined by waveguide structure and optical wavelength other than the driving source.According to the mode field distribution, the optimum coupling efficiency can be predicted. Compared with another numerical methods,the CPU-time and memory elements of computer used by FDTD are much less.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575076,61475061,and 61405070)the Fundamental Research Funds for the Central Universities,China(Grant No.JCKY-QKJC08)+1 种基金the Science and Technology Development Plan of Jilin Province,China(Grant Nos.20130522151JH,20140519006JH,and 20160520091JH)the China Postdoctoral Science Foundation(Grant No.2015M571362)
文摘In this work, long-period waveguide grating-based tunable wavelength filters using organic–inorganic grafting poly(methyl methacrylate)(PMMA) materials are designed and fabricated by metal-cladding directly defined technique.The thermal stabilities and optical properties of the organic–inorganic grafting PMMA core materials are analyzed. Structures and performance parameters of the waveguide gratings and self-electrode heaters are designed and simulated. The contrast of the filter is about 15 d B and the resonant wavelength can be tuned by different electric powers applied to the metal-cladding self-electrode heaters. The temperature sensitivity is 3.5 nm/℃ and the switching time is about 1 ms. The technique is very suitable for realizing the optoelectronic integrated wavelength-division-multiplexing systems.
基金Project supported by the Natural Science Foundation of Shanghai,China (Grant No. 11ZR1443700)the Funds from the Science and Technology Commission of Shanghai Municipality,China (Grant Nos. 10DJ1400400 and 10706200500)the National Natural Science Foundation of China (Grant No. 61106051)
文摘Grating couplers are widely investigated as coupling interfaces between silicon-on-insulator waveguides and optical fibers.In this work,a high-efficiency and complementary metal-oxide-semiconductor(CMOS) process compatible grating coupler is proposed.The poly-Si layer used as a gate in the CMOS metal-oxide-semiconductor field effect transistor(MOSFET) is combined with a normal fully etched grating coupler,which greatly enhances its coupling efficiency.With optimal structure parameters,a coupling efficiency can reach as high as ~ 70% at a wavelength of 1550 nm as indicated by simulation.From the angle of fabrication,all masks and etching steps are shared between MOSFETs and grating couplers,thereby making the high performance grating couplers easily integrated with CMOS circuits.Fabrication errors such as alignment shift are also simulated,showing that the device is quite tolerant in fabrication.
文摘We present both design and experimental results for an As2S3 grating coupler on a thin film LiNbO3 substrate. A basic grating coupler structure is designed with coupling efficiency of 53% to a single mode fiber. A maximum simulated coupling efficiency of 78.8% is achieved, assuming a polymer bonding process. The basic structure was fabricated, and the coupling efficiency was measured to be at least 23.4% at 1540 nm. Some of the loss may be attributable to non-grating sources, such as waveguide tapers and testing fiber tails. A grating cavity was then measured using the grating couplers. The cavity waveguide propagation loss was 2.0 dB/cm. For a 400 nm thick As2S3 on 500 nm thin film LiNbO3 on insulator, the confinement factor in the LiNbO3 crystal is 82.3% when the As2S3 waveguide width is 400 nm, showing that As2S3-on-thin film LiNbO3 is an excellent candidate for thin film electro-optic applications.
基金Project supported by the National Key Research and Development Program of China(No.2016YFB0402404)the High-Tech Research and Development Program of China(Nos.2013AA031401,2015AA016902,2015AA016904)the National Natural Foundation of China(Nos.61674136,61435002,61176053,61274069)
文摘We present the design of a diffractive grating structure and get the optimal parameters which can achieve more than 75%coupling efficiency(CE) between single-mode fiber and silicon-on-insulator(SOI) waveguide through 2D finite-different time-domain(FDTD) simulation.The proposed architecture has a uniform structure with no bottom reflection element or silicon overlay.The structure,including grating couplers,adiabatic tapers and interconnection waveguides can be fabricated on the SOI waveguide with only a single electron-beam lithography(ICP) step,which is CMOS-compatible.A relatively high coupling efficiency of 47.2%was obtained at a wavelength of 1562 nm.
基金the National Natural Science Foundation of China(NSFC)(Grant No.61505020)the Fundamental Research Funds for the Central Universities(Grant No. ZYGX2016J005).
文摘We propose a novel structure and unique sensing mechanism bio-chemical sensor which is fabricated by a polymer long-period waveguide grating with the detection liquid directly as the waveguide cladding.Quantitative detection is realized from analyzing the output absorption spectrum and resonant wavelength shift related to the liquid detection concentration.The proposed polymer long-period waveguide grating based liquid refractive-index sensor is developed experimentally,the high sensitivity of 1.01×10^4nm/RIU is achieved,and the temperature stability coefficient is 1.47nm/℃.Theoretically and experimentally,this work has been demonstrated to have potential application in chemical and biological detections and may provide an important technical support for solving today's increasingly serious civil problems such as food safety and drug safety, which will also have the important scientific significance and application prospects.
文摘We present a theoretical analysis of corrugated long-period gratings in planar waveguides. In particular, we calculate the transmission spectra for both the TE and TM polarizations and highlight the polarization-independence conditions.
文摘Long-period waveguide grating based filters have attracted attention due to their flexible fabrication,a variety of materials and structures,low back reflection,low insertion loss,and excellent performance in the tuning range and temperature sensitivity.To our knowledge,for the first time,a two-segment polymer long-period waveguide grating was cascaded to implement a filter with a narrower bandwidth.Experimental results showed that the device had a maximum extinction ratio of 24 dB at 1577 nm,and the 12 dB bandwidth was 10 nm.The temperature sensitivity of the fabricated device was 1.79 nm/℃.
基金supported by the National Basic Research Program of China(No.2009CB326206)the National Natural Science Foundation of China(Nos.61076111,50975266)+2 种基金the Key Laboratory Fund of China(No.9140C1204040909)the Graduate Innovation Project of China (No.20103083)the Fund for Top Young Academic Leaders of Higher Learning Institutions of Shanxi(TYAL),China
文摘An ultra-small integrated photonic circuit has been proposed,which incorporates a high-quality-factor passive micro-ring resonator(MR) linked to a vertical grating coupler on a standard silicon-on-insulator(SOI) substrate.The experimental results demonstrate that the MR propagation loss is 0.532 dB/cm with a 10μm radius ring resonator,the intrinsic quality factor is as high as 202.000,the waveguide grating wavelength response curve is a 1 dB bandwidth of 40 nm at 1540 nm telecommunication wavelengths,and the measured fiber-to-fiber coupling loss is 10 dB.Furthermore,the resonator wavelength temperature dependence of the 450 nm wide micro-ring resonator is 54.1 pm/℃.Such vertical grating coupler and low loss MR-integrated components greatly promote a key element in biosensors and high-speed interconnect communication applications.
基金Supported by Program for New Century Excellent Talents in University of the P.R.China(Grant number:NCET-05-0897)Scientific Research Project for Universities in Xinjiang(Grant number:XJEDU2004E02 and XJEDU2006I10).