The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.He...The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.Herein,we fabricate Pt and Co single-atom sites successively on polymeric carbon nitride(CN).In this Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst,the noble-metal active sites are maximized,and the single-atomic Co_(1)N_4sites are tuned to Co_(1)N_3sites by photogenerated electrons arising from the introduced single-atomic Pt_(1)N_4sites.Mechanism studies and density functional theory(DFT)calculations reveal that the 3d orbitals of Co_(1)N_3single sites are filled with unpaired d-electrons,which lead to the improved visible-light response,carrier separation and charge migration for CN photocatalysts.Thereafter,the protons adsorption and activation are promoted.Taking this advantage of long-range electron synergy in bimetallic single atomic sites,the photocatalytic hydrogen evolution activity over Pt_(1)-Co_(1)/CN achieves 915.8 mmol g^(-1)Pt h^(-1),which is 19.8 times higher than Co_(1)/CN and 3.5 times higher to Pt_(1)/CN.While this electron-synergistic effect is not so efficient for Pt nanoclusters.These results demonstrate the synergistic effect at electron-level and provide electron-level guidance for the design of efficient photocatalysts.展开更多
We prove the existence of an analogy between spatial long-range interactions,which are of the convolution-type introduced in non-relativistic quantum mechanics,and the generalized uncertainty principle predicted from ...We prove the existence of an analogy between spatial long-range interactions,which are of the convolution-type introduced in non-relativistic quantum mechanics,and the generalized uncertainty principle predicted from quantum gravity theories.As an illustration,black hole temperature effects are discussed.It is observed that for specific choices of the moment's kernels,cold black holes may emerge in the theory.展开更多
We propose a new generalized Su–Schrieffer–Heeger model with hierarchical long-range hopping based on a onedimensional tetratomic chain. The properties of the topological states and phase transition, which depend on...We propose a new generalized Su–Schrieffer–Heeger model with hierarchical long-range hopping based on a onedimensional tetratomic chain. The properties of the topological states and phase transition, which depend on the cointeraction of the intracell and intercell hoppings, are investigated using the phase diagram of the winding number. It is shown that topological states with large positive/negative winding numbers can readily be generated in this system. The properties of the topological states can be verified by the ring-type structures in the trajectory diagram of the complex plane. The topological phase transition is strongly related to the opening(closure) of an energy bandgap at the center(boundaries) of the Brillouin zone. Finally, the non-zero-energy edge states at the ends of the finite system are revealed and matched with the bulk–boundary correspondence.展开更多
Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patte...Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.展开更多
Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GP...Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.展开更多
The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is ...The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.展开更多
This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achi...This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction.More specifically,the proposed method involves an intra-domain fusion unit based on self-attention and an interdomain fusion unit based on cross-attention,which mine and integrate long dependencies within the same domain and across domains.Through long-range dependency modeling,the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective.In particular,we introduce the shifted windows mechanism into the self-attention and cross-attention,which allows our model to receive images with arbitrary sizes.On the other hand,the multi-scene image fusion problems are generalized to a unified framework with structure maintenance,detail preservation,and proper intensity control.Moreover,an elaborate loss function,consisting of SSIM loss,texture loss,and intensity loss,drives the network to preserve abundant texture details and structural information,as well as presenting optimal apparent intensity.Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-theart unified image fusion algorithms and task-specific alternatives.Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.展开更多
In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructu...In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructure and thermal expansion curve were discussed and the carbon concentration inside the sample was measured. The ferrite layer of about 450 μm thickness was obtained without pearlite on the surface of the sample in the microstructure. The thermal expansion curve shows that the ferrite layer without pearlite is formed during the local phase transformation, which is followed by the global transformation. The carbon concentration in the core of the sample (0.061%) is significantly higher than that of the bulk material (0.054%). All results show that carbon has long-range diffusion from the outer layer to the inner layer of the sample. The transformation is predominantly interface-controlled mode during local transformation, and the interface migration rate is about 2.25 μm/s.展开更多
In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range...In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range propagation(km-range)process of the electron beam,it is difficult to directly use the particle-in-cell method to simultaneously consider the space charge effect of beam and the influence of the geomagnetic field.Owing to these limitations,in this paper,we proposed a simplified method.The ps-range electronic micropulses emitted by the RF accelerator were transmitted and fused to form a ns-range electron beam;then,combined with the improved moving window technology,the model was constructed to simulate the long-range propagation process of the relativistic electron beam in near-Earth environment.Finally,by setting the direction of movement of the beam to be parallel,perpendicular and at an inclination of 3°to the magnetic field,we analyzed and compared the effects of the applied magnetic fields in different directions on the quality of the beam during long-range propagation.The simulation results showed that the parallel state of the beam motion and magnetic fields should be achieved as much as possible to ensure the feasibility of the space debris removal.展开更多
In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the...In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the autonomous tissues. The wave source supporting this kind of new pattern is the oscillatory one-dimensional Winfree-loop self- organized under the presence of a long-range link, which is explored by the dominant phase-advanced driving method. Based on this understanding we can effectively regulate the oscillations of excitable media by suitably arranging the long-range link, including construction of self-sustained target waves with controllable period and wave length, or manipulation of system states between different patterns.展开更多
By establishing the Markov model for a long-range correlated time series (LRCS) and analysing its evolutionary characteristics, this paper defines a physical effective correlation length (ECL) T, which reflects th...By establishing the Markov model for a long-range correlated time series (LRCS) and analysing its evolutionary characteristics, this paper defines a physical effective correlation length (ECL) T, which reflects the predictability of the LRCS. It also finds that the ECL has a better power law relation with the long-range correlated exponent γ of the LRCS: T = Kexp(-γ/0.3) + Y, (0 〈 γ〈 1) the predictability of the LRCS decays exponentially with the increase of γ It is then applied to a daily maximum temperature series (DMTS) recorded at 740 stations in China between the years 1960-2005 and calculates the ECL of the DMTS. The results show the remarkable regional distributive feature that the ECL is about 10-14 days in west, northwest and northern China, and about 5-10 days in east, southeast and southern China. Namely, the predictability of the DMTS is higher in central-west China than in east and southeast China. In addition, the ECL is reduced by 1-8 days in most areas of China after subtracting the seasonal oscillation signal of the DMTS from its original DMTS; however, it is only slightly altered when the decadal linear trend is removed from the original DMTS. Therefore, it is shown that seasonal oscillation is a significant component of daily maximum temperature evolution and may provide a basis for predicting daily maximum temperatures. Seasonal oscillation is also significant for guiding general weather predictions, as well as seasonal weather predictions.展开更多
In this article, we are concerned with the construction of global smooth small-amplitude solutions to the Cauchy problem of the one species Vlasov-Poisson-Boltzmann system near Maxwellians for long-range interactions....In this article, we are concerned with the construction of global smooth small-amplitude solutions to the Cauchy problem of the one species Vlasov-Poisson-Boltzmann system near Maxwellians for long-range interactions. Compared with the former result obtained by Duan and Liu in [12] for the two species model, we do not ask the initial perturbation to satisfy the neutral condition and our result covers all physical collision kernels for the full range of intermolecular repulsive potentials.展开更多
This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations t...This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new controller are summarized.展开更多
A long-range sound propagation experiment was conducted in the West Pacific Ocean in July 2013. Linear frequency-modulated signals with a frequency band of 260-360Hz were transmitted by a transducer hung on a floating...A long-range sound propagation experiment was conducted in the West Pacific Ocean in July 2013. Linear frequency-modulated signals with a frequency band of 260-360Hz were transmitted by a transducer hung on a floating ship during the experiment and were received by a horizontal line array towed by another ship sailing away from the transducer. The maximum distance between the two ships was 1029km. Signals were received at the distances 34-220 kin, 612-635 km and 926-1029 kin. Transmission loss versus distance between source and receiver was obtained and compared with the theoretical results predicted by the parabolic equation method program RAM. It is shown that RAM is adequate for estimating the transmission loss for distances up to 1029km. When the water depth is larger than the surface conjugate depth, the ocean bottom rarely influences the transmission loss in the convergence zones. However, in the opposite situation, the ocean bottom contributes significantly to the transmission loss.展开更多
We study numerically the electronic properties of one-dimensional systems with long-range correlated binary potentials. The potentials are mapped from binary sequences with a power-law power spectrum over the entire f...We study numerically the electronic properties of one-dimensional systems with long-range correlated binary potentials. The potentials are mapped from binary sequences with a power-law power spectrum over the entire frequency range, which is characterized by correlation exponent β. We find the localization length ζ increases withβ. At system sizes N →∞, there are no extended states. However, there exists a transition at a threshold ζ. Whenβ 〉 βc, we obtain ζ 〉 0. On the other hand, at finite system sizes, ζ≥ N may happen at certain β, which makes the system "metallic", and the upper-bound system size N* (β) is given.展开更多
Critical dynamics of the random Ising model with long-range interaction decaying as r-(d+σ) where d is the dimensionality) is studied by the theoretic renormalization-group approach. The system is released to an evol...Critical dynamics of the random Ising model with long-range interaction decaying as r-(d+σ) where d is the dimensionality) is studied by the theoretic renormalization-group approach. The system is released to an evolution within a model A dynamics. Asymptotic scaling laws are studied in a frame of the expansion in = 2σ - d. In dimensions d < 2σ. the dynamic exponent z is calculated to the second order in at the random fixed point.展开更多
We study the one-dimensional general non-Hermitian models with asymmetric long-range hopping and explore how to analytically solve the systems under some specific boundary conditions.Although the introduction of long-...We study the one-dimensional general non-Hermitian models with asymmetric long-range hopping and explore how to analytically solve the systems under some specific boundary conditions.Although the introduction of long-range hopping terms prevents us from finding analytical solutions for arbitrary boundary parameters,we identify the existence of exact solutions when the boundary parameters fulfill some constraint relations,which give the specific boundary conditions.Our analytical results show that the wave functions take simple forms and are independent of hopping range,while the eigenvalue spectra display rich model-dependent structures.Particularly,we find the existence of a special point coined as pseudo-periodic boundary condition,for which the eigenvalues are the same as those of the periodical system when the hopping parameters fulfill certain conditions,whereas the eigenstates display the non-Hermitian skin effect.展开更多
The characterization of long-range correlations and fractal properties of DNA sequences has proved to be adifficult though rewarding task mainly due to the mosaic character of DNA consisting of many patches of various...The characterization of long-range correlations and fractal properties of DNA sequences has proved to be adifficult though rewarding task mainly due to the mosaic character of DNA consisting of many patches of various lengthswith different nucleotide constitutions.In this paper we investigate statistical correlations among different positions in DNAsequences using the two-dimensional DNA walk.The root-mean-square fluctuation F(l)is described by a power law.Theautocorrelation function C(l),which is used to measure the linear dependence and periodicity,exists a power law ofC(l)-l^(-μ).We also calculate the mean-square distance<R^2(l)>along the DNA chain,and it may be expressed as<R^2(l)>-l^(?)with 2>γ>1.Our investigations can provide some insights into long-range correlations in DNA sequences.展开更多
In this paper, ultracold cesium molecules are formed through photoassociation technology, which is carried out in a magneto-optical trap. High resolution photoassociaion spectra with the rotational progressions up to ...In this paper, ultracold cesium molecules are formed through photoassociation technology, which is carried out in a magneto-optical trap. High resolution photoassociaion spectra with the rotational progressions up to J = 7 are obtained. Three rovibrational levels of the long-range 0+ state of Cs2 below the (6S1/2 + 6P1/2) dissociation limit are specifically investigated. By fitting their binding energy intervals to the non-rigid rotational model, the rotational constant of the long- range 0u+ state is determined. A proportional dependence of the value of the rotational constant on the vibrational quantum number is demonstrated.展开更多
基金the support of the National Natural Science Foundation of China (22002118,22208262,52271228,52202298,52201279,51834009,51801151)the Natural Science Foundation of Shaanxi Province (2021JQ-468,2020JZ-47)+2 种基金the Natural Science Foundation of Shaanxi Provincial Department of Education (21JP086)the Postdoctoral Research Foundation of China (2020 M683528,2020TQ0245,2018M633643XB)the Hundred Talent Program of Shaanxi Province。
文摘The development of novel single-atom catalysts with optimal electron configuration and economical noble-metal cocatalyst for efficient photocatalytic hydrogen production is of great importance,but still challenging.Herein,we fabricate Pt and Co single-atom sites successively on polymeric carbon nitride(CN).In this Pt_(1)-Co_(1)/CN bimetallic single-atom catalyst,the noble-metal active sites are maximized,and the single-atomic Co_(1)N_4sites are tuned to Co_(1)N_3sites by photogenerated electrons arising from the introduced single-atomic Pt_(1)N_4sites.Mechanism studies and density functional theory(DFT)calculations reveal that the 3d orbitals of Co_(1)N_3single sites are filled with unpaired d-electrons,which lead to the improved visible-light response,carrier separation and charge migration for CN photocatalysts.Thereafter,the protons adsorption and activation are promoted.Taking this advantage of long-range electron synergy in bimetallic single atomic sites,the photocatalytic hydrogen evolution activity over Pt_(1)-Co_(1)/CN achieves 915.8 mmol g^(-1)Pt h^(-1),which is 19.8 times higher than Co_(1)/CN and 3.5 times higher to Pt_(1)/CN.While this electron-synergistic effect is not so efficient for Pt nanoclusters.These results demonstrate the synergistic effect at electron-level and provide electron-level guidance for the design of efficient photocatalysts.
文摘We prove the existence of an analogy between spatial long-range interactions,which are of the convolution-type introduced in non-relativistic quantum mechanics,and the generalized uncertainty principle predicted from quantum gravity theories.As an illustration,black hole temperature effects are discussed.It is observed that for specific choices of the moment's kernels,cold black holes may emerge in the theory.
基金Project supported by the National Natural Science Foundation of China(Grant No.11405100)the Natural Science Basic Research Program in Shaanxi Province of China(Grant Nos.2022JZ-02,2020JM-507,and 2019JM-332)+1 种基金the Doctoral Research Fund of Shaanxi University of Science and Technology in China(Grant Nos.2018BJ-02 and 2019BJ-58)the Youth Innovation Team of Shaanxi Universities.
文摘We propose a new generalized Su–Schrieffer–Heeger model with hierarchical long-range hopping based on a onedimensional tetratomic chain. The properties of the topological states and phase transition, which depend on the cointeraction of the intracell and intercell hoppings, are investigated using the phase diagram of the winding number. It is shown that topological states with large positive/negative winding numbers can readily be generated in this system. The properties of the topological states can be verified by the ring-type structures in the trajectory diagram of the complex plane. The topological phase transition is strongly related to the opening(closure) of an energy bandgap at the center(boundaries) of the Brillouin zone. Finally, the non-zero-energy edge states at the ends of the finite system are revealed and matched with the bulk–boundary correspondence.
基金provided by the National Natural Science Foundation of China(Grants No.12272238 and No.11932013)the"Outstanding Young Scholar"Program of Shanghai Municipalthe"Dawn"Program of Shanghai Education Commission(Grant No.19SG47)。
文摘Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.
基金Project Funded by Chongqing Changjiang Electrical Appliances Industries Group Co.,Ltd
文摘Accurate navigation is important for long-range rocket projectile's precise striking. To obtain stable and high-per- formance navigation result, a ultra-tight global positioning system/inertial navigation system (GPS/INS) integration based nav- igation approach is proposed. The accurate short-time output of INS is used by GPS receiver to assist in acquisition of signal, and output information of INS and GPS is fused based on federated filter. Meanwhile, the improved cubature Kalman filter with strong tracking ability is chosen to serve as the local filter, and then the federated filter is enhanced based on vector sharing theory. Finally, simulation results show that the navigation accuracy with the proposed method is higher than that with traditional methods. It provides reference for long-range rocket projectile navigation.
文摘The effects of random long-range connections (shortcuts) on the transitions of neural firing patterns in coupled Hindmarsh-Rose neurons are investigated, where each neuron is subjected to an external current. It is found that, on one hand, the system can achieve the transition of neural firing patterns from the fewer-period state to the multi-period one, when the number of the added shortcuts in the neural network is greater than a threshold value, indicating the occurrence of in-transition of neural firing patterns. On the other hand, for a stronger coupling strength, we can also find the similar but reverse results by adding some proper random connections. In addition, the influences of system size and coupling strength on such transition behavior, as well as the internality between the transition degree of firing patterns and its critical characteristics for different external stimulation current, are also discussed.
基金This work was supported by the National Natural Science Foundation of China(62075169,62003247,62061160370)the Key Research and Development Program of Hubei Province(2020BAB113).
文摘This study proposes a novel general image fusion framework based on cross-domain long-range learning and Swin Transformer,termed as SwinFusion.On the one hand,an attention-guided cross-domain module is devised to achieve sufficient integration of complementary information and global interaction.More specifically,the proposed method involves an intra-domain fusion unit based on self-attention and an interdomain fusion unit based on cross-attention,which mine and integrate long dependencies within the same domain and across domains.Through long-range dependency modeling,the network is able to fully implement domain-specific information extraction and cross-domain complementary information integration as well as maintaining the appropriate apparent intensity from a global perspective.In particular,we introduce the shifted windows mechanism into the self-attention and cross-attention,which allows our model to receive images with arbitrary sizes.On the other hand,the multi-scene image fusion problems are generalized to a unified framework with structure maintenance,detail preservation,and proper intensity control.Moreover,an elaborate loss function,consisting of SSIM loss,texture loss,and intensity loss,drives the network to preserve abundant texture details and structural information,as well as presenting optimal apparent intensity.Extensive experiments on both multi-modal image fusion and digital photography image fusion demonstrate the superiority of our SwinFusion compared to the state-of-theart unified image fusion algorithms and task-specific alternatives.Implementation code and pre-trained weights can be accessed at https://github.com/Linfeng-Tang/SwinFusion.
基金Project(16PJ1430200)supported by Shanghai Pujiang Program,China
文摘In order to explore the possible diffusion distance of carbon during proeutectoid ferrite transformation, a slow cooling test of low carbon steel was carried out under vacuum of the thermal simulator. The microstructure and thermal expansion curve were discussed and the carbon concentration inside the sample was measured. The ferrite layer of about 450 μm thickness was obtained without pearlite on the surface of the sample in the microstructure. The thermal expansion curve shows that the ferrite layer without pearlite is formed during the local phase transformation, which is followed by the global transformation. The carbon concentration in the core of the sample (0.061%) is significantly higher than that of the bulk material (0.054%). All results show that carbon has long-range diffusion from the outer layer to the inner layer of the sample. The transformation is predominantly interface-controlled mode during local transformation, and the interface migration rate is about 2.25 μm/s.
基金supported by National Natural Science Foundation of China (Nos. 61372050, U1730247)
文摘In recent years,it has been proposed to use satellite-mounted radio-frequency(RF)accelerators to produce high-current relativistic electron beams to complete debris removal tasks.However,when simulating the long-range propagation(km-range)process of the electron beam,it is difficult to directly use the particle-in-cell method to simultaneously consider the space charge effect of beam and the influence of the geomagnetic field.Owing to these limitations,in this paper,we proposed a simplified method.The ps-range electronic micropulses emitted by the RF accelerator were transmitted and fused to form a ns-range electron beam;then,combined with the improved moving window technology,the model was constructed to simulate the long-range propagation process of the relativistic electron beam in near-Earth environment.Finally,by setting the direction of movement of the beam to be parallel,perpendicular and at an inclination of 3°to the magnetic field,we analyzed and compared the effects of the applied magnetic fields in different directions on the quality of the beam during long-range propagation.The simulation results showed that the parallel state of the beam motion and magnetic fields should be achieved as much as possible to ensure the feasibility of the space debris removal.
基金supported by the National Natural Science Foundation of China (Grant No. 11047146)the Science Foundation of the Education Bureau of Shaanxi Province of China (Grant No. 11JK0544)+1 种基金the Natural Science Foundation of Shaanxi Province of China (Grant No. 2010JQ1014)the Science Foundation of Baoji University of Arts and Sciences (Grant Nos. ZK1048 andZK1049)
文摘In this paper we investigate spatiotemporal pattern formation in excitable media with only a long-range link. Besides the trivial solutions of spiral patterns, we find the asymptotic self-sustained target waves in the autonomous tissues. The wave source supporting this kind of new pattern is the oscillatory one-dimensional Winfree-loop self- organized under the presence of a long-range link, which is explored by the dominant phase-advanced driving method. Based on this understanding we can effectively regulate the oscillations of excitable media by suitably arranging the long-range link, including construction of self-sustained target waves with controllable period and wave length, or manipulation of system states between different patterns.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40930952,40875040,and 41005043)the Special Project for Public Welfare Enterprises(Grant No.GYHY200806005)the National Science/Technology Support Program of China(Grant Nos.2007BAC29B01 and 2009BAC51B04)
文摘By establishing the Markov model for a long-range correlated time series (LRCS) and analysing its evolutionary characteristics, this paper defines a physical effective correlation length (ECL) T, which reflects the predictability of the LRCS. It also finds that the ECL has a better power law relation with the long-range correlated exponent γ of the LRCS: T = Kexp(-γ/0.3) + Y, (0 〈 γ〈 1) the predictability of the LRCS decays exponentially with the increase of γ It is then applied to a daily maximum temperature series (DMTS) recorded at 740 stations in China between the years 1960-2005 and calculates the ECL of the DMTS. The results show the remarkable regional distributive feature that the ECL is about 10-14 days in west, northwest and northern China, and about 5-10 days in east, southeast and southern China. Namely, the predictability of the DMTS is higher in central-west China than in east and southeast China. In addition, the ECL is reduced by 1-8 days in most areas of China after subtracting the seasonal oscillation signal of the DMTS from its original DMTS; however, it is only slightly altered when the decadal linear trend is removed from the original DMTS. Therefore, it is shown that seasonal oscillation is a significant component of daily maximum temperature evolution and may provide a basis for predicting daily maximum temperatures. Seasonal oscillation is also significant for guiding general weather predictions, as well as seasonal weather predictions.
基金supported by the Fundamental Research Funds for the Central Universitiessupported by a grant from the National Science Foundation of China under contract 11501556+1 种基金supported by a grant from the National Natural Science Foundation under contract 11501187supported by three grants from the National Natural Science Foundation of China under contracts 10925103,11271160,and 11261160485
文摘In this article, we are concerned with the construction of global smooth small-amplitude solutions to the Cauchy problem of the one species Vlasov-Poisson-Boltzmann system near Maxwellians for long-range interactions. Compared with the former result obtained by Duan and Liu in [12] for the two species model, we do not ask the initial perturbation to satisfy the neutral condition and our result covers all physical collision kernels for the full range of intermolecular repulsive potentials.
文摘This paper presents a new Long-range generalized predictive controller in the synchronous reference frame for a wind energy system doubly-fed induction generator based. This controller uses the state space equations that consider the rotor current and voltage as state and control variables, to execute the predictive control action. Therefore, the model of the plant must be transformed into two discrete transference functions, by means of an auto-regressive moving average model, in order to attain a discrete and decoupled controller, which makes it possible to treat it as two independent single-input single-output systems instead of a magnetic coupled multiple-input multiple-output system. For achieving that, a direct power control strategy is used, based on the past and future rotor currents and voltages estimation. The algorithm evaluates the rotor current predictors for a defined prediction horizon and computes the new rotor voltages that must be injected to controlling the stator active and reactive powers. To evaluate the controller performance, some simulations were made using Matlab/Simulink. Experimental tests were carried out with a small-scale prototype assuming normal operating conditions with constant and variable wind speed profiles. Finally, some conclusions respect to the dynamic performance of this new controller are summarized.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174312 and 11434012the Public Science and Technology Research Project of Ocean under Grant No 201405032
文摘A long-range sound propagation experiment was conducted in the West Pacific Ocean in July 2013. Linear frequency-modulated signals with a frequency band of 260-360Hz were transmitted by a transducer hung on a floating ship during the experiment and were received by a horizontal line array towed by another ship sailing away from the transducer. The maximum distance between the two ships was 1029km. Signals were received at the distances 34-220 kin, 612-635 km and 926-1029 kin. Transmission loss versus distance between source and receiver was obtained and compared with the theoretical results predicted by the parabolic equation method program RAM. It is shown that RAM is adequate for estimating the transmission loss for distances up to 1029km. When the water depth is larger than the surface conjugate depth, the ocean bottom rarely influences the transmission loss in the convergence zones. However, in the opposite situation, the ocean bottom contributes significantly to the transmission loss.
基金Project supported by the National Natural Science Foundation of China (Grants Nos. 10904074 and 10974097), the National Key Basic Research Special Foundation of China (Grant No. 2009CB929501), and the National Science Council (Grant No. 97-2112- M-032-003-MY3).
文摘We study numerically the electronic properties of one-dimensional systems with long-range correlated binary potentials. The potentials are mapped from binary sequences with a power-law power spectrum over the entire frequency range, which is characterized by correlation exponent β. We find the localization length ζ increases withβ. At system sizes N →∞, there are no extended states. However, there exists a transition at a threshold ζ. Whenβ 〉 βc, we obtain ζ 〉 0. On the other hand, at finite system sizes, ζ≥ N may happen at certain β, which makes the system "metallic", and the upper-bound system size N* (β) is given.
文摘Critical dynamics of the random Ising model with long-range interaction decaying as r-(d+σ) where d is the dimensionality) is studied by the theoretic renormalization-group approach. The system is released to an evolution within a model A dynamics. Asymptotic scaling laws are studied in a frame of the expansion in = 2σ - d. In dimensions d < 2σ. the dynamic exponent z is calculated to the second order in at the random fixed point.
基金the National Key Research and Development Program of China(Grant No.2016YFA0300600)the National Natural Science Foundation of China(Grant No.11974413)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000).
文摘We study the one-dimensional general non-Hermitian models with asymmetric long-range hopping and explore how to analytically solve the systems under some specific boundary conditions.Although the introduction of long-range hopping terms prevents us from finding analytical solutions for arbitrary boundary parameters,we identify the existence of exact solutions when the boundary parameters fulfill some constraint relations,which give the specific boundary conditions.Our analytical results show that the wave functions take simple forms and are independent of hopping range,while the eigenvalue spectra display rich model-dependent structures.Particularly,we find the existence of a special point coined as pseudo-periodic boundary condition,for which the eigenvalues are the same as those of the periodical system when the hopping parameters fulfill certain conditions,whereas the eigenstates display the non-Hermitian skin effect.
基金This work was financially support by the National Natural Science Foundation of China(Nos.29874012,20174036,20274040)Natural Science Foundation of Zhejiang Province(No.10102).
文摘The characterization of long-range correlations and fractal properties of DNA sequences has proved to be adifficult though rewarding task mainly due to the mosaic character of DNA consisting of many patches of various lengthswith different nucleotide constitutions.In this paper we investigate statistical correlations among different positions in DNAsequences using the two-dimensional DNA walk.The root-mean-square fluctuation F(l)is described by a power law.Theautocorrelation function C(l),which is used to measure the linear dependence and periodicity,exists a power law ofC(l)-l^(-μ).We also calculate the mean-square distance<R^2(l)>along the DNA chain,and it may be expressed as<R^2(l)>-l^(?)with 2>γ>1.Our investigations can provide some insights into long-range correlations in DNA sequences.
基金supported by the National Basic Research Program of China (Grant No. 2012CB921603)the National High Technology Research and Development Program of China (Grant No. 2011AA010801)+3 种基金the National Natural Science Foundation of China (Grant Nos. 61008012 and 10934004)the International Science and Technology Cooperation Program of China (Grant No. 2001DFA12490)the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064)the New Teacher Fund of the Ministry of Education of China (Grant No. 20101401120004)
文摘In this paper, ultracold cesium molecules are formed through photoassociation technology, which is carried out in a magneto-optical trap. High resolution photoassociaion spectra with the rotational progressions up to J = 7 are obtained. Three rovibrational levels of the long-range 0+ state of Cs2 below the (6S1/2 + 6P1/2) dissociation limit are specifically investigated. By fitting their binding energy intervals to the non-rigid rotational model, the rotational constant of the long- range 0u+ state is determined. A proportional dependence of the value of the rotational constant on the vibrational quantum number is demonstrated.