Mass loss should be considered while calculating the penetration depth of concrete by eroding long-rod projectiles of high velocity.The penetration process is divided into two phases:eroding phase and rigid phase.Dur...Mass loss should be considered while calculating the penetration depth of concrete by eroding long-rod projectiles of high velocity.The penetration process is divided into two phases:eroding phase and rigid phase.During eroding phase,a model to predict the penetration depth is established on the assumption that there is a chipping region in the bottom of crater.During rigid phase,Forrestal formula is adopted to calculate the penetration depth.Using this model,the depth of concrete penetration by a tungsten alloy long-rod projectile is calculated.When the critical eroding velocity is between 950 m/s and 1 000 m/s,the result is in good agreement with the experimental data.展开更多
The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation...The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation.Hybrid structures with rectangular cores in transverse orthogonal arrangement and slidefitting ceramic inserts of zirconia toughened alumina prisms were fabricated with titanium alloy TC4(Ti6 Al4 V),AISI 4340 steel and 7075 aluminum alloy panels,respectively.The results showed that the hybrid structure of Ti6A14V exhibited the highest penetration resistance,followed by that of 7075 aluminum alloy with the same area density.The penetration resistance of the hybrid structure of AISI4340 steel was the lowest.The underlying mechanisms showed that the metallic material of a ceramicmetal hybrid structure can directly affect its energy absorption from the impact projectile,which further affects its penetration resistance.Different metallic frames exhibited different failure characteristics,resulting in different constraint conditions or support conditions for ceramic prisms.The high penetration resistance of the Ti6Al4V hybrid structure was due to its stronger back support to ceramic prisms as compared with that of AISI 4340 steel hybrid structure,and better constraint condition for ceramic prisms by metallic webs as compared with that of 7075 aluminum alloy hybrid structure.The results of mass efficiency and thickness efficiency showed that the Ti6Al4V hybrid structure has advantages in reducing both the thickness and the mass of protective structure.In addition,because the ceramic-metal hybrid structures in the present work were heterogeneous,impact position has slight influence on their penetration resistances.展开更多
The“self-sharpening”effect has been observed experimentally in the penetration of tungsten high-entropy alloy(WHEA)into steel targets in previous study.From the microscopic observation of the residual WHEA long-rod ...The“self-sharpening”effect has been observed experimentally in the penetration of tungsten high-entropy alloy(WHEA)into steel targets in previous study.From the microscopic observation of the residual WHEA long-rod projectile(LRP),the multiphase structure at micro-scale of WHEA is the key effects on self-sharpening penetration process.In order to describe the distinctive penetration behavior,the interaction between micro phases is introduced to modify the hydrodynamic penetration model.The yield strengths of WHEA phases are determined based on the solid solution strengthening methods.Combined with the elbow-streamline model,the self-sharpening mechanism is revealed in view of the multi-phase flow dynamics and the flow field in the deformation area of the LRP nose is characterized to depict the shear layer evolution and the shape of the LRP’s nose as well as the determination of the penetration channel.The self-sharpening coefficient considering the reduction of nose radius is proposed and introduced into the penetration model to calculate the depth of penetration and the penetration channel.Results show that the multi-phase interaction at the microscopic level contributes to the inhomogeneous distribution of the WHEA phases.The shear layer evolution separates part of the LRP material from the nose and makes the nose radius decrease more quickly.It is also the reason that WHEA LRPs have a pointed nose compared with the mushroom nose of WHA heavy alloy(WHA)LRPs.The calculated results agree well with the corresponding experimental data of WHA and WHEA LRPs penetrating into semi-infinite medium carbon steel targets with elevated impact velocities.展开更多
基金Sponsored by State Key Laboratory of Explosion Science and Technology Foundation(ZDKT08-04,YBKT09-03)
文摘Mass loss should be considered while calculating the penetration depth of concrete by eroding long-rod projectiles of high velocity.The penetration process is divided into two phases:eroding phase and rigid phase.During eroding phase,a model to predict the penetration depth is established on the assumption that there is a chipping region in the bottom of crater.During rigid phase,Forrestal formula is adopted to calculate the penetration depth.Using this model,the depth of concrete penetration by a tungsten alloy long-rod projectile is calculated.When the critical eroding velocity is between 950 m/s and 1 000 m/s,the result is in good agreement with the experimental data.
基金the support received from the National Natural Science Foundation of China(No.11872121)。
文摘The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation.Hybrid structures with rectangular cores in transverse orthogonal arrangement and slidefitting ceramic inserts of zirconia toughened alumina prisms were fabricated with titanium alloy TC4(Ti6 Al4 V),AISI 4340 steel and 7075 aluminum alloy panels,respectively.The results showed that the hybrid structure of Ti6A14V exhibited the highest penetration resistance,followed by that of 7075 aluminum alloy with the same area density.The penetration resistance of the hybrid structure of AISI4340 steel was the lowest.The underlying mechanisms showed that the metallic material of a ceramicmetal hybrid structure can directly affect its energy absorption from the impact projectile,which further affects its penetration resistance.Different metallic frames exhibited different failure characteristics,resulting in different constraint conditions or support conditions for ceramic prisms.The high penetration resistance of the Ti6Al4V hybrid structure was due to its stronger back support to ceramic prisms as compared with that of AISI 4340 steel hybrid structure,and better constraint condition for ceramic prisms by metallic webs as compared with that of 7075 aluminum alloy hybrid structure.The results of mass efficiency and thickness efficiency showed that the Ti6Al4V hybrid structure has advantages in reducing both the thickness and the mass of protective structure.In addition,because the ceramic-metal hybrid structures in the present work were heterogeneous,impact position has slight influence on their penetration resistances.
基金This work was supported by the National Natural Science Foundation of China(Grant 11790292)the NSAF Joint Fund(Grant U1730101).
文摘The“self-sharpening”effect has been observed experimentally in the penetration of tungsten high-entropy alloy(WHEA)into steel targets in previous study.From the microscopic observation of the residual WHEA long-rod projectile(LRP),the multiphase structure at micro-scale of WHEA is the key effects on self-sharpening penetration process.In order to describe the distinctive penetration behavior,the interaction between micro phases is introduced to modify the hydrodynamic penetration model.The yield strengths of WHEA phases are determined based on the solid solution strengthening methods.Combined with the elbow-streamline model,the self-sharpening mechanism is revealed in view of the multi-phase flow dynamics and the flow field in the deformation area of the LRP nose is characterized to depict the shear layer evolution and the shape of the LRP’s nose as well as the determination of the penetration channel.The self-sharpening coefficient considering the reduction of nose radius is proposed and introduced into the penetration model to calculate the depth of penetration and the penetration channel.Results show that the multi-phase interaction at the microscopic level contributes to the inhomogeneous distribution of the WHEA phases.The shear layer evolution separates part of the LRP material from the nose and makes the nose radius decrease more quickly.It is also the reason that WHEA LRPs have a pointed nose compared with the mushroom nose of WHA heavy alloy(WHA)LRPs.The calculated results agree well with the corresponding experimental data of WHA and WHEA LRPs penetrating into semi-infinite medium carbon steel targets with elevated impact velocities.