The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for...The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.展开更多
The development of flexible and stretchable electronics has attracted much attention.As an important part of wearable electronic systems,the connection between conductive yarns and electronic components affects the st...The development of flexible and stretchable electronics has attracted much attention.As an important part of wearable electronic systems,the connection between conductive yarns and electronic components affects the stability and accuracy of their electrical reliability.In this paper,three different connections were attempted to electrically and mechanically link two conductive yarns,including soldering followed by waterborne polyurethane(WPU)encapsulation,coating of conductive silver adhesive with WPU encapsulation,as well as coating of conductive silver adhesive with polydimethylsiloxane(PDMS)encapsulation.The surface morphologies and electro-mechanical behaviors of the three created connected conductive yarns were characterized.Compared with their electro-mechanical behaviors of the established three connections,the connection with soldering remained electrically conductive to around 200%,which mainly came from the stress concentration between the stiff soldering and soft conductive yarns.However,the coating of conductive silver adhesive and encapsulated protection of PDMS can make the connected conductive yarns stretchable up to 300%with almost constant electrical resistance.展开更多
Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the brakin...Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.展开更多
There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gainedmomentum in the recent years among potential users.Connected and Autonomous Electric ...There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gainedmomentum in the recent years among potential users.Connected and Autonomous Electric Vehicle(CAEV)technologies are fascinating the automakers and inducing them to manufacture connected autonomous vehicles with self-driving features such as autopilot and self-parking.Therefore,Traffic Flow Prediction(TFP)is identified as a major issue in CAEV technologies which needs to be addressed with the help of Deep Learning(DL)techniques.In this view,the current research paper presents an artificial intelligence-based parallel autoencoder for TFP,abbreviated as AIPAE-TFP model in CAEV.The presented model involves two major processes namely,feature engineering and TFP.In feature engineering process,there are multiple stages involved such as feature construction,feature selection,and feature extraction.In addition to the above,a Support Vector Data Description(SVDD)model is also used in the filtration of anomaly points and smoothen the raw data.Finally,AIPAE model is applied to determine the predictive values of traffic flow.In order to illustrate the proficiency of the model’s predictive outcomes,a set of simulations was performed and the results were investigated under distinct aspects.The experimentation outcomes verified the effectual performance of the proposed AIPAE-TFP model over other methods.展开更多
The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for so...The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.展开更多
Removal of the electrical shielding from a type of Fourier transform seismometer overlays seismic information with Extremely Low Frequency-range (ELF) electromagnetic signals between about 0.3 Hz and 36 Hz (the ITU-de...Removal of the electrical shielding from a type of Fourier transform seismometer overlays seismic information with Extremely Low Frequency-range (ELF) electromagnetic signals between about 0.3 Hz and 36 Hz (the ITU-designated range of ELF is 3 to 30 Hz). The observed signals originate in the electric power grid, shown clearly by the fact that they are sum and difference heterodyne products with the power grid’s higher harmonics of 60 Hz, typically the 36th and 37th, because the seismometer’s chosen frequency modulation (FM) carrier frequency is roughly 2200 Hz. It is especially interesting that on 2017-03-19, prior to 14:25:12 UTC, the instrument recorded an 11 minute sequence of 20.3 Hz ELF outbursts that culminated intimately with a 3.2 magnitude earthquake located a few miles west of Bardwell KY. These ~20.3 Hz ELF signals, very near the third Schumann resonance frequency, have been recorded numerous times. They are distinctive and fairly strong, ranging 15 to 30 db or more above the noise floor, but definitely not an every-day event;months can pass without them. So far most of these ELF signals do not have an intimately associated earthquake, with the event of 2017-03-19 being one of only two exceptions recorded thus far. That quake’s location was more than one hundred miles from the instrument, in the New Madrid Seismic Zone (NMSZ). The second case, a quake in Kansas, was about three times farther from the instrument, and its ELF signals were correspondingly weaker. Those other, unassociated electromagnetic events might come from quakes too weak to detect, but it should be noted that stronger, easily detected quakes also rarely exhibit any ELF/seismic “connectivity”. This paper describes an instrument that overlays ELF, electric field and seismic signals. The instrument’s two-dimensional (2D) output has a time axis (horizontal) resolution of ~3 seconds and an ELF frequency (vertical) resolution of ~0.3 Hz.展开更多
This paper explores the movement of connected vehicles in Indiana for vehicles classified by the NHTSA Product Information Catalog Vehicle listing as being either electric (EV) or hybrid electric (HV). Analysis of tra...This paper explores the movement of connected vehicles in Indiana for vehicles classified by the NHTSA Product Information Catalog Vehicle listing as being either electric (EV) or hybrid electric (HV). Analysis of trajectories from July 12-18, 2021 for the state of Indiana observed nearly 33,300 trips and 267,000 vehicle miles travelled (VMT) for the combination of EV and HV. Approximately 53% of the VMT occurred in just 10 counties. For just EVs, there were 9814 unique trips and 64,700 Electric Vehicle Miles Traveled (EVMTs) in total. A further categorization of this revealed that 18% of these EVMTs were on Interstate roadways and 82% on non-interstate roads. <span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">Proximity analysis of existing DC Fast charging stations in relation to interstate roadways revealed multiple charging deserts that would be most benefited by additional charging capacity. Eleven roadway sections among the 9 interstates were found to have a gap in available DC fast chargers of 50 miles or more. Although the connected vehicle data set analyzed did not include all EV’s the methodology presented in this paper provides a technique that can be scaled as additional EV connected vehicle data becomes available to agencies. Furthermore, it emphasizes the need for transportation agencies and automotive vendors to strengthen their data sharing partnerships to help accelerate </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">adoption of EV and reduce consumer range anxiety with EV. Graphics are included that illustrate examples of counties that are both overserved and underserved by charging infrastructure.</span>展开更多
Bibliographic reports on the electric conductivity of pure homoionic montmorillonite at low water content were analyzed in order to stress a general behavior of conductivity. At low water content, the conductivity is ...Bibliographic reports on the electric conductivity of pure homoionic montmorillonite at low water content were analyzed in order to stress a general behavior of conductivity. At low water content, the conductivity is attributed to a mechanism of charge transport involving protons due to the influence of the electric field of the exchangeable cations on water molecules at the solvation shell. Conductivity was analyzed in relation with the polarizing power (ionic potential) of the exchangeable cations and with the influence of the connectivity within samples. The general conclusion stressed is that the connectivity due to the association between 2:1 unit layers (clay fabric) is the main factor on the experimental or "macroscopic" electric conductivity of pure homoionic montmorillonite at low water content. Considerations on the experimental conditions of different bibliographic reports were also made. The conclusion and the considerations made on experimental conditions are a good starting point for future researches on electric conductivity ofhomoionic montmorillonite at low water content.展开更多
基金Supported by National Key R&D Program of China (Grant No.2021YFB2402002)Beijing Natural Science Foundation of China (Grant No.L223013)。
文摘The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data.
基金National Natural Science Foundation of China(Nos.12002085 and 51603039)Shanghai Pujiang Program,China(No.19S10462)+3 种基金Fundamental Research Funds for the Central Universities,China(Nos.2232017D-12 and 20K10405)Key Laboratory of Textile Science and Technology(Donghua University)Ministry of Education,China(No.KLTST201623)Initial Research Funds for Young Teachers of Donghua University,China(No.104-07-005388)。
文摘The development of flexible and stretchable electronics has attracted much attention.As an important part of wearable electronic systems,the connection between conductive yarns and electronic components affects the stability and accuracy of their electrical reliability.In this paper,three different connections were attempted to electrically and mechanically link two conductive yarns,including soldering followed by waterborne polyurethane(WPU)encapsulation,coating of conductive silver adhesive with WPU encapsulation,as well as coating of conductive silver adhesive with polydimethylsiloxane(PDMS)encapsulation.The surface morphologies and electro-mechanical behaviors of the three created connected conductive yarns were characterized.Compared with their electro-mechanical behaviors of the established three connections,the connection with soldering remained electrically conductive to around 200%,which mainly came from the stress concentration between the stiff soldering and soft conductive yarns.However,the coating of conductive silver adhesive and encapsulated protection of PDMS can make the connected conductive yarns stretchable up to 300%with almost constant electrical resistance.
基金Supported by Jiangsu Provincial Key R&D Program(Grant No.BE2019004)National Natural Science Funds for Distinguished Young Scholar of China(Grant No.52025121)+1 种基金National Nature Science Foundation of China(Grant Nos.51805081,51975118,52002066)Jiangsu Provincial Achievement Transformation Project(Grant No.BA2018023).
文摘Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.
文摘There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gainedmomentum in the recent years among potential users.Connected and Autonomous Electric Vehicle(CAEV)technologies are fascinating the automakers and inducing them to manufacture connected autonomous vehicles with self-driving features such as autopilot and self-parking.Therefore,Traffic Flow Prediction(TFP)is identified as a major issue in CAEV technologies which needs to be addressed with the help of Deep Learning(DL)techniques.In this view,the current research paper presents an artificial intelligence-based parallel autoencoder for TFP,abbreviated as AIPAE-TFP model in CAEV.The presented model involves two major processes namely,feature engineering and TFP.In feature engineering process,there are multiple stages involved such as feature construction,feature selection,and feature extraction.In addition to the above,a Support Vector Data Description(SVDD)model is also used in the filtration of anomaly points and smoothen the raw data.Finally,AIPAE model is applied to determine the predictive values of traffic flow.In order to illustrate the proficiency of the model’s predictive outcomes,a set of simulations was performed and the results were investigated under distinct aspects.The experimentation outcomes verified the effectual performance of the proposed AIPAE-TFP model over other methods.
基金This work was supported by the National Nature Science Foundation of China(NSFC)under Project 51607079.
文摘The rectangular wire winding AC electrical machine has drawn extensive attention due to their high slot fill factor,good heat dissipation,strong rigidity and short end-windings,which can be potential candidates for some traction application so as to enhance torque density,improve efficiency,decrease vibration and weaken noise,etc.In this paper,based on the complex process craft and the electromagnetic performance,a comprehensive and systematical overview on the rectangular wire windings AC electrical machine is introduced.According to the process craft,the different type of the rectangular wire windings,the different inserting direction of the rectangular wire windings and the insulation structure have been compared and analyzed.Furthermore,the detailed rectangular wire windings connection is researched and the general design guideline has been concluded.Especially,the performance of rectangular wire windings AC machine has been presented,with emphasis on the measure of improving the bigger AC copper losses at the high speed condition due to the distinguished proximity and skin effects.Finally,the future trend of the rectangular wire windings AC electrical machine is prospected.
文摘Removal of the electrical shielding from a type of Fourier transform seismometer overlays seismic information with Extremely Low Frequency-range (ELF) electromagnetic signals between about 0.3 Hz and 36 Hz (the ITU-designated range of ELF is 3 to 30 Hz). The observed signals originate in the electric power grid, shown clearly by the fact that they are sum and difference heterodyne products with the power grid’s higher harmonics of 60 Hz, typically the 36th and 37th, because the seismometer’s chosen frequency modulation (FM) carrier frequency is roughly 2200 Hz. It is especially interesting that on 2017-03-19, prior to 14:25:12 UTC, the instrument recorded an 11 minute sequence of 20.3 Hz ELF outbursts that culminated intimately with a 3.2 magnitude earthquake located a few miles west of Bardwell KY. These ~20.3 Hz ELF signals, very near the third Schumann resonance frequency, have been recorded numerous times. They are distinctive and fairly strong, ranging 15 to 30 db or more above the noise floor, but definitely not an every-day event;months can pass without them. So far most of these ELF signals do not have an intimately associated earthquake, with the event of 2017-03-19 being one of only two exceptions recorded thus far. That quake’s location was more than one hundred miles from the instrument, in the New Madrid Seismic Zone (NMSZ). The second case, a quake in Kansas, was about three times farther from the instrument, and its ELF signals were correspondingly weaker. Those other, unassociated electromagnetic events might come from quakes too weak to detect, but it should be noted that stronger, easily detected quakes also rarely exhibit any ELF/seismic “connectivity”. This paper describes an instrument that overlays ELF, electric field and seismic signals. The instrument’s two-dimensional (2D) output has a time axis (horizontal) resolution of ~3 seconds and an ELF frequency (vertical) resolution of ~0.3 Hz.
文摘This paper explores the movement of connected vehicles in Indiana for vehicles classified by the NHTSA Product Information Catalog Vehicle listing as being either electric (EV) or hybrid electric (HV). Analysis of trajectories from July 12-18, 2021 for the state of Indiana observed nearly 33,300 trips and 267,000 vehicle miles travelled (VMT) for the combination of EV and HV. Approximately 53% of the VMT occurred in just 10 counties. For just EVs, there were 9814 unique trips and 64,700 Electric Vehicle Miles Traveled (EVMTs) in total. A further categorization of this revealed that 18% of these EVMTs were on Interstate roadways and 82% on non-interstate roads. <span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">Proximity analysis of existing DC Fast charging stations in relation to interstate roadways revealed multiple charging deserts that would be most benefited by additional charging capacity. Eleven roadway sections among the 9 interstates were found to have a gap in available DC fast chargers of 50 miles or more. Although the connected vehicle data set analyzed did not include all EV’s the methodology presented in this paper provides a technique that can be scaled as additional EV connected vehicle data becomes available to agencies. Furthermore, it emphasizes the need for transportation agencies and automotive vendors to strengthen their data sharing partnerships to help accelerate </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">adoption of EV and reduce consumer range anxiety with EV. Graphics are included that illustrate examples of counties that are both overserved and underserved by charging infrastructure.</span>
文摘Bibliographic reports on the electric conductivity of pure homoionic montmorillonite at low water content were analyzed in order to stress a general behavior of conductivity. At low water content, the conductivity is attributed to a mechanism of charge transport involving protons due to the influence of the electric field of the exchangeable cations on water molecules at the solvation shell. Conductivity was analyzed in relation with the polarizing power (ionic potential) of the exchangeable cations and with the influence of the connectivity within samples. The general conclusion stressed is that the connectivity due to the association between 2:1 unit layers (clay fabric) is the main factor on the experimental or "macroscopic" electric conductivity of pure homoionic montmorillonite at low water content. Considerations on the experimental conditions of different bibliographic reports were also made. The conclusion and the considerations made on experimental conditions are a good starting point for future researches on electric conductivity ofhomoionic montmorillonite at low water content.