[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18...[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products.展开更多
Rare earth compositions, La, Ce and Pr in Mm(NiCoMnAl)(5) hydrogen storage alloy, were arranged by uniform design method. The discharge performances and kinetics parameters including capacity, exchange current density...Rare earth compositions, La, Ce and Pr in Mm(NiCoMnAl)(5) hydrogen storage alloy, were arranged by uniform design method. The discharge performances and kinetics parameters including capacity, exchange current density, symmetry factor and hydrogen diffusion coefficient of the alloy at -40degreesC, were tested in standard tri-electrode cell. And linear regression method was used to analyze the effect of rare earth compositions on the performances of hydrogen storage alloys. The results show that the capacities of the alloys are positively correlative to the square of Ce content at -40degreesC and under both 0.4 and 0.2C rate. The kinetics parameters and hydrogen diffusion coefficient indicate that the low-temperature performances of the alloys are mainly controlled by hydrogen diffusion process, and the surface electrochemical reaction affects the low-temperature performances to a certain extent. The low-temperature discharge capacities of the battery were also tested. The results show excellent low-temperature performances. The battery delivers 69.6% of its room-temperature capacity at -40degreesC and 0.2C rate, 77.7% at -40degreesC and 0.4C rate, 59.1% at -45degreesC and 0.2C rate.展开更多
Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage ca...Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.展开更多
Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy...Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.展开更多
Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent...Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.展开更多
In vitro culture of isolated cells from tissues and organs is sometimes used to preserve and reproduce unique genotypes of woody plants. The technique, however, requires regular subculturing which raises storage costs...In vitro culture of isolated cells from tissues and organs is sometimes used to preserve and reproduce unique genotypes of woody plants. The technique, however, requires regular subculturing which raises storage costs and creates risks for contamination and accumulation of somaclonal variations. We examined the effects of sugar composition of culture medium, the length of photoperiod, light intensity, and ambient temperature on the survival of plant material in vitro. The study was performed on 49 genotypes of Populus tremula (46 transgenic genotypes carrying GFP-, Xeg- and Gus-genes, and 3 control (wild-type) genotypes). It was shown that effective storage of plants was achieved through optimization of the combined effects of all storage parameters under study. Based on the experimental data, we developed a protocol for long-term in vitro storage of desirable genotypes without subculture and with a survival rate of up to 98%. The best results were obtained when the plant material was pre-cultured on a WPM medium containing 15 g/L sucrose, 7.5 g/L sorbitol and 7.5 g/L mannitol, and then stored at +4°C under a 24-hour light day cycle with only 8 hours of light per day and maximum light intensity of 2000 lux. Post-storage recovery was done by culturing on a medium containing 1 mg/L gibberellic acid. The developed method can be used for effective in vitro storage of the studied genotypes for up to 24 months without subculture.展开更多
With the rapid development of cloud environment, the capabilities of systems have been promoted with powerful computing and storage. But for the characteristic of “pay-as-you-go” of cloud resources, it is necessary ...With the rapid development of cloud environment, the capabilities of systems have been promoted with powerful computing and storage. But for the characteristic of “pay-as-you-go” of cloud resources, it is necessary to consider the different data storage cost. Especially for processing of “old data” in longterm storage, an appropriate strategy is needed to reduce users’ cost. Considering the characteristics of price stratification in the current commercial cloud environment, a three-level price stratified storage strategy is proposed based on the CTT-SP algorithm, which stores part of the “old data” on relatively inexpensive secondary and tertiary storage, and ensures that the time delay caused by three-level storage does not exceed the deadline. Compared with other storage methods, the experimental result shows the strategy proposed can guarantee the time delay while reducing the cost of users significantly in longterm storage.展开更多
The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that...The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that there is a great potential for low-temperature heat recovery and utilization.This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades,power generation,refrigeration,and thermal energy storage.The detailed description will be given from the aspects of system structure improvement,work medium improvement,and thermodynamic and economic performance evaluation.It also pointed out the development bottlenecks and future development trends of various technologies.The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner,and has great development prospects.展开更多
The effect of KOH electrolyte concentration on low-temperature electrochemical properties of LaNi5 alloy electrodes at 233 K was studied. The results indicated that the electrolyte concentration had great influence on...The effect of KOH electrolyte concentration on low-temperature electrochemical properties of LaNi5 alloy electrodes at 233 K was studied. The results indicated that the electrolyte concentration had great influence on discharge capacity and discharge voltage plateau of LaNi5 alloy electrode at 233 K, and the highest discharge capacity and discharge voltage plateau were both obtained at 6 mol/L KOH. When the KOH electrolyte concentration changed from 5 to 9 mol/L at 233 K, the high rate discharge ability (HRD) had the same change tendency as the diffusion coefficient, but the exchange current density did not change significantly, which implied that hydrogen diffusion was the control step at low temperature 233 K for discharge process of LaNi5 alloy electrode.展开更多
The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by...The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by using the wetness impregnation method. The prepared catalysts were characterized by a series of physico-chemical characterization techniques such as BET surface area, thermo-gravimetric (TG), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the amount of carbon deposits on the surface of the catalysts and the type of the carbonaceous species were discussed by TG. It was found that the bimetallic Pt-Ru/7-A1203 catalysts exhibit both superior catalytic activity and remarkable stability by comparison of monometallic catalysts. During the 500 h stability test, the bimetallic catalyst showed a good performance at 800 ~C in CO2 reforming of CH4, exhibiting an excellent anti-carbon performance with the mass loss of less than 8.5%. The results also indicate that CO2 and CH4 have quite stable conversions of 96.0 % and 94.0 %, respectively. Also, the selectivity of the catalysts is excellent with the products ratio of CO/H2 maintaining at 1.02. Furthermore, it was found in TEM images that the active carbonaceous species were formed during the catalytic reaction, and well-distributed dot-shaped metallic particles with a relatively uniform size of about 3 nm as well as amorphous carbon structures were observed. Combined with BET, TG, TEM tests, it is concluded that the selected bimetallic catalysts can work continuously in a stable state at the high temperature, which has a potential to be utilized for the closed-loop cycle of the solar thermochemical energy storage in future industry applications.展开更多
The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced lo...The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced loading, the refined finite element model for hot spot stress calculation, the combination of stress components, and fatigue damage assessment based on S-N curve.展开更多
As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered...As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation.展开更多
The push for renewable energy emphasizes the need for energy storage systems(ESSs)to mitigate the unpre-dictability and variability of these sources,yet challenges such as high investment costs,sporadic utilization,an...The push for renewable energy emphasizes the need for energy storage systems(ESSs)to mitigate the unpre-dictability and variability of these sources,yet challenges such as high investment costs,sporadic utilization,and demand mismatch hinder their broader adoption.In response,shared energy storage systems(SESSs)offer a more cohesive and efficient use of ESS,providing more accessible and cost-effective energy storage solutions to overcome these obstacles.To enhance the profitability of SESSs,this paper designs a multi-time-scale resource allocation strategy based on long-term contracts and real-time rental business models.We initially construct a life cycle cost model for SESS and introduce a method to estimate the degradation costs of multiple battery groups by cycling numbers and depth of discharge within the SESS.Subsequently,we design various long-term contracts from both capacity and energy perspectives,establishing associated models and real-time rental models.Lastly,multi-time-scale resource allocation based on the decomposition of user demand is proposed.Numerical analysis validates that the business model based on long-term contracts excels over models operating solely in the real-time market in economic viability and user satisfaction,effectively reducing battery degradation,and leveraging the aggregation effect for SESS can generate an additional increase of 10.7%in net revenue.展开更多
Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties,but its controllable synthesis remains very challenging with harsh conditions and ...Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties,but its controllable synthesis remains very challenging with harsh conditions and spontaneously flammable precursors.Herein,a surface group directed method is developed to efficiently achieve low-temperature synthesis and selfassembly of zero-dimensional(0D)Al nanocrystals over one-dimensional(1D)carbon fibers(Al@CFs)through non-flammable AlCl3 reduction at 70°C.Theoretical calculations unveil surface‒OLi groups of carbon fibers exert efficient binding effect to AlCl3,which guides intimate adsorption and in-situ self-assembly of the generated Al nanocrystals.The distinctive 0D-over-1D Al@CFs provides long 1D conductive networks for electron transfer,ultrafine 0D Al nanocrystals for fast lithiation and excellent buffering effect for volume change,thus exhibiting high structure stability and superior lithium storage performance.This work paves the way for mild and controllable synthesis of Al-based nanomaterials for new high-value applications.展开更多
A power system with a high wind power integration requires extra transmission capacity to accommodate the intermittency inherent to wind power production.Storage can smooth out this intermittency and reduce transmissi...A power system with a high wind power integration requires extra transmission capacity to accommodate the intermittency inherent to wind power production.Storage can smooth out this intermittency and reduce transmission requirements.This paper proposes a stochastic optimization model to coordinate the long-term planning of both transmission and storage facilities to efficiently integrate wind power.Both longterm and short-term uncertainties are considered in this model.Long-term uncertainty is described via scenarios,while shortterm uncertainty is described via operating conditions.Garver’s 6-node system and a system representing Northwest China in 2030 are used to illustrate the proposed model.Results indicate that storage reduces transmission requirement and the overall investment,and allows the efficient integration of wind power.展开更多
Lipid-like nanoparticles(LLNs)have been extensively explored for messenger RNA(mRNA)delivery in various biomedical applications.However,the long-term storage of these nanoparticles is still a challenge for their clini...Lipid-like nanoparticles(LLNs)have been extensively explored for messenger RNA(mRNA)delivery in various biomedical applications.However,the long-term storage of these nanoparticles is still a challenge for their clinical translation.In this study,we investigated a series of conditions for the long-term storage of LLNs with encapsulation of mRNA.We evaluated the stability of LLNs with different concentrations of cryoprotectants(sucrose,trehalose or mannitol)under the conditions of freezing or lyophilization processes.Through in vitro and in vivo mRNA delivery studies,we identified the optimal storage condition,and found that the addition with 5%(w/v)sucrose or trehalose to LLNs could remain their mRNA delivery efficiency for at least three months in the liquid nitrogen storage condition.展开更多
Copper intercalated birnessite MnO_(2)(δ-MnO_(2))with weak crystallinity and high specific surface area(421 m^(2)/g)was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation.The mola...Copper intercalated birnessite MnO_(2)(δ-MnO_(2))with weak crystallinity and high specific surface area(421 m^(2)/g)was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation.The molar ratio of Cu/Mn was as high as 0.37,which greatly weakened the Mn-O bond and created a lot of low-temperature active oxygen species.In situ DRIFTS revealed strong bonding of copper ions with CO.As-synthesized MnO_(2)-150Cu achieved 100%conversion of 250 ppm CO in normal air(3.1 ppm H_(2)O)even at−10°C under the weight-hourly space velocity(WHSV)of 150 L/(g·h).In addition,it showed high oxygen storage capacity to oxidize CO in inert atmosphere.Though the concurrent moisture in air significantly inhibited CO adsorption and its conversion at ambient temperature,MnO_(2)-150Cu could stably convert CO in 1.3%moisture air at 70°C owing to its great low-temperature activity and reduced competitive adsorption of water with increased temperature.This study discovers the excellent low-temperature activity of weakly crystallized δ-MnO_(2) induced by high content intercalated copper ions.展开更多
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol...Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.展开更多
The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissio...The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissions.Herein,Cs_(1)Mg_(3)Al catalyst prepared by sol-gel method was cyclic tested in NO_(x)storage under 5 vol%water.At 100°C,the NO_(x)storage capacity(1219 μmol g^(-1))was much higher than that of Pt/BaO/Al_(2)O_(3)(610 μmol g^(-1)).This provided new insights for non-noble metal catalysts in low-temperature passive NO_(x)adsorption.The addition of Cs improved the mobility of oxygen species and thus improved the NO_(x)storage capacity.The XRD,XPS,IR spectra and in situ DRIFTs with NH3 probe showed an interaction between CsO_(x)and AlO_(x)sites via oxygen species formed on Cs_(1)Mg_(3)Al catalyst.The improved mobility of oxygen species inferred from O2-TPD was consistent with high NO_(x)storage capacity related to enhanced formation of nitrate and additional nitrite species by NO_(x)oxidation.Moreover,the addition of Mg might improve the stability of Cs_(1)Mg_(3)Al by stabilizing surface active oxygen species in cyclic experiments.展开更多
A hydrogen compressed air energy storage power plant with an integrated electrolyzer is ideal for large-scale,long-term energy storage because of the emission-free operation and the possibility to offer multiple ancil...A hydrogen compressed air energy storage power plant with an integrated electrolyzer is ideal for large-scale,long-term energy storage because of the emission-free operation and the possibility to offer multiple ancillary services on the German energy market.This paper defines analyzes such a storage concept and conducts an extensive comparison with four additional storage concepts based on various criteria.The results show that the combination of storing compressed air and hydrogen offers a higher efficiency than storing only hydrogen and lower specific investment costs than storing only compressed air.This result is confirmed with analysis of the optimal sizing of each power plant component for simultaneous participation on multiple energy markets with a linear optimization dispatch mode.The hydrogen compressed air energy storage(HCAES)power plant can utilize more revenue possibilities than a hydrogen energy storage because of the higher round-trip efficiency and the combination of the air compressor and the integrated electrolyzer during charging mode.The integration of the electrolyzer,however,offers a couple of challenges itself because of the highly flexible operation mode.A new concept for the controllable 24-pulse diode-thyristor rectifier of the electrolyzer is presented,that uses mostly common components while offering little to no grid harmonics and a long lifetime.The flexible integrated electrolyzer allows for the 4-quadrant operation of the storage power plant.展开更多
基金Supported by Science and Technology Achievement Transformation Program of Sichuan Province(2023ZHCG0079)Research and Application of Key Techniques for Industrialization of Frozen Prepared Meat Dishes(GCZX22-35)Sichuan Pig Innovation Team of National Agricultural Industry Technology System(scsztd-2024-08-07).
文摘[Objectives]This study was conducted to explore the dynamic changes of volatile flavor compounds in prepared pork during storage at different low-temperature conditions.[Methods]Prepared pork was stored at 4,-4 and-18℃.The volatile flavor compounds of prepared pork were determined by solid-phase microextraction-gas chromatography-mass spectrometry(SPME-GC-MS)at days 0,7,14,21 and 28,and relative odor activity value(OAV),principal component analysis(PCA)and cluster analysis(CA)were combined to analyze changes in volatile flavor compounds of prepared pork during storage.[Results]The total number of volatile flavor compounds gradually decreased with the prolongation of the storage period,and OAV analysis identified 22 key flavor compounds(OAV≥1).The results of PCA and CA showed that 2-methyl-1-butanol,1-octen-3-ol,linalool,cineole,hexanal and nonanal were the main key flavor components,and the degree of flavor degradation was low under both superchilling and freezing conditions.After 28 days of storage,the alcohol content in the chilling group was significantly higher than other two groups,and the overall content of volatile flavor compounds was also significantly higher than other two groups,indicating that the-4℃chilling storage was more favorable for maintaining the overall flavor of prepared pork.[Conclusions]This study provides a theoretical basis for finding a better storage method for prepared meat products.
文摘Rare earth compositions, La, Ce and Pr in Mm(NiCoMnAl)(5) hydrogen storage alloy, were arranged by uniform design method. The discharge performances and kinetics parameters including capacity, exchange current density, symmetry factor and hydrogen diffusion coefficient of the alloy at -40degreesC, were tested in standard tri-electrode cell. And linear regression method was used to analyze the effect of rare earth compositions on the performances of hydrogen storage alloys. The results show that the capacities of the alloys are positively correlative to the square of Ce content at -40degreesC and under both 0.4 and 0.2C rate. The kinetics parameters and hydrogen diffusion coefficient indicate that the low-temperature performances of the alloys are mainly controlled by hydrogen diffusion process, and the surface electrochemical reaction affects the low-temperature performances to a certain extent. The low-temperature discharge capacities of the battery were also tested. The results show excellent low-temperature performances. The battery delivers 69.6% of its room-temperature capacity at -40degreesC and 0.2C rate, 77.7% at -40degreesC and 0.4C rate, 59.1% at -45degreesC and 0.2C rate.
基金financially supported by the project of the National Natural Science Foundation of China (Grant Nos.51972270,52322203)the Key Research and Development Program of Shaanxi Province (Grant NO.2024GH-ZDXM-21)the Fundamental Research Funds for the Central Universities (Grant Nos.G2022KY0607,23GH0202277).
文摘Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.
基金supported by the Energy Efficiency and Renewable Energy,Building Technologies Program,of the US Department of Energy,under contract no.DE-AC02-05CH11231the support on the DSC/TGA 3+supported by the Office of Science,Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231
文摘Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.
基金the financial support from the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021007)the National Nature Science Foundation of China(21903082 and 22273100)+2 种基金the Dalian Institute of Chemical Physics(DICP I202036,and I202218)the DNL Cooperation Fund,CAS(DNL202012)Liaoning Provincial Natural Science Foundation of China under grant 2022-MS-020。
文摘Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.
文摘In vitro culture of isolated cells from tissues and organs is sometimes used to preserve and reproduce unique genotypes of woody plants. The technique, however, requires regular subculturing which raises storage costs and creates risks for contamination and accumulation of somaclonal variations. We examined the effects of sugar composition of culture medium, the length of photoperiod, light intensity, and ambient temperature on the survival of plant material in vitro. The study was performed on 49 genotypes of Populus tremula (46 transgenic genotypes carrying GFP-, Xeg- and Gus-genes, and 3 control (wild-type) genotypes). It was shown that effective storage of plants was achieved through optimization of the combined effects of all storage parameters under study. Based on the experimental data, we developed a protocol for long-term in vitro storage of desirable genotypes without subculture and with a survival rate of up to 98%. The best results were obtained when the plant material was pre-cultured on a WPM medium containing 15 g/L sucrose, 7.5 g/L sorbitol and 7.5 g/L mannitol, and then stored at +4°C under a 24-hour light day cycle with only 8 hours of light per day and maximum light intensity of 2000 lux. Post-storage recovery was done by culturing on a medium containing 1 mg/L gibberellic acid. The developed method can be used for effective in vitro storage of the studied genotypes for up to 24 months without subculture.
基金Anhui Natural Science Foundation 1908085MF206 and National Natural Science Foundation of China (NO. 61402007, 61573022)the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
文摘With the rapid development of cloud environment, the capabilities of systems have been promoted with powerful computing and storage. But for the characteristic of “pay-as-you-go” of cloud resources, it is necessary to consider the different data storage cost. Especially for processing of “old data” in longterm storage, an appropriate strategy is needed to reduce users’ cost. Considering the characteristics of price stratification in the current commercial cloud environment, a three-level price stratified storage strategy is proposed based on the CTT-SP algorithm, which stores part of the “old data” on relatively inexpensive secondary and tertiary storage, and ensures that the time delay caused by three-level storage does not exceed the deadline. Compared with other storage methods, the experimental result shows the strategy proposed can guarantee the time delay while reducing the cost of users significantly in longterm storage.
基金Supported by the National Natural Science Foundation of China(21476119,21406124)Major Science and Technology Innovation Project of Shandong Province(2018CXGC1102).
文摘The amount of low-temperature heat generated in industrial processes is high,but recycling is limited due to low grade and low recycling efficiency,which is one of the reasons for low energy efficiency.It implies that there is a great potential for low-temperature heat recovery and utilization.This article provided a detailed review of recent advances in the development of low-temperature thermal upgrades,power generation,refrigeration,and thermal energy storage.The detailed description will be given from the aspects of system structure improvement,work medium improvement,and thermodynamic and economic performance evaluation.It also pointed out the development bottlenecks and future development trends of various technologies.The low-temperature heat combined utilization technology can recover waste heat in an all-round and effective manner,and has great development prospects.
基金the National Natural Science Foundation of China (NSFC 50571072)
文摘The effect of KOH electrolyte concentration on low-temperature electrochemical properties of LaNi5 alloy electrodes at 233 K was studied. The results indicated that the electrolyte concentration had great influence on discharge capacity and discharge voltage plateau of LaNi5 alloy electrode at 233 K, and the highest discharge capacity and discharge voltage plateau were both obtained at 6 mol/L KOH. When the KOH electrolyte concentration changed from 5 to 9 mol/L at 233 K, the high rate discharge ability (HRD) had the same change tendency as the diffusion coefficient, but the exchange current density did not change significantly, which implied that hydrogen diffusion was the control step at low temperature 233 K for discharge process of LaNi5 alloy electrode.
基金Project(2010CB227103) supported by the National Basic Research Program of ChinaProjects(50930007,50836005) supported by the Key Program of the National Natural Science Foundation of ChinaProject(U1034005) supported by the National Natural Science Foundation of China
文摘The reaction of CO2 reforming of CH4 has been investigated with y-A1203-supported platinum and ruthenium bimetallic catalysts, with the specific purpose of thermochemical energy storage. The catalysts were prepared by using the wetness impregnation method. The prepared catalysts were characterized by a series of physico-chemical characterization techniques such as BET surface area, thermo-gravimetric (TG), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). In addition, the amount of carbon deposits on the surface of the catalysts and the type of the carbonaceous species were discussed by TG. It was found that the bimetallic Pt-Ru/7-A1203 catalysts exhibit both superior catalytic activity and remarkable stability by comparison of monometallic catalysts. During the 500 h stability test, the bimetallic catalyst showed a good performance at 800 ~C in CO2 reforming of CH4, exhibiting an excellent anti-carbon performance with the mass loss of less than 8.5%. The results also indicate that CO2 and CH4 have quite stable conversions of 96.0 % and 94.0 %, respectively. Also, the selectivity of the catalysts is excellent with the products ratio of CO/H2 maintaining at 1.02. Furthermore, it was found in TEM images that the active carbonaceous species were formed during the catalytic reaction, and well-distributed dot-shaped metallic particles with a relatively uniform size of about 3 nm as well as amorphous carbon structures were observed. Combined with BET, TG, TEM tests, it is concluded that the selected bimetallic catalysts can work continuously in a stable state at the high temperature, which has a potential to be utilized for the closed-loop cycle of the solar thermochemical energy storage in future industry applications.
文摘The procedure of assessment of structural fatigue strength of an offshore floating production and storage and offloading unit (FPSO) in this paper. The emphasis is placed on the long-term prediction of wave induced loading, the refined finite element model for hot spot stress calculation, the combination of stress components, and fatigue damage assessment based on S-N curve.
基金supported by an Early Career Faculty Grant from NASA’s Space Technology Research Grants Program (80NSSC18K1509)supported by the Institute for Electronics and Nanotechnology Seed Grant and performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which was supported by the National Science Foundation (ECCS-2025462)
文摘As lithium(Li)-ion batteries expand their applications,operating over a wide temperature range becomes increasingly important.However,the lowtemperature performance of conventional graphite anodes is severely hampered by the poor diffusion kinetics of Li ions(Li^(+)).Here,zinc oxide(ZnO) nanoparticles are incorporated into the expanded graphite to improve Li^(+)diffusion kinetics,resulting in a significant improvement in lowtemperature performance.The ZnO-embedded expanded graphite anodes are investigated with different amounts of ZnO to establish the structurecharge storage mechanism-performance relationship with a focus on lowtemperature applications.Electrochemical analysis reveals that the ZnOembedded expanded graphite anode with nano-sized ZnO maintains a large portion of the diffusion-controlled charge storage mechanism at an ultra-low temperature of-50℃ Due to this significantly enhanced Li^(+)diffusion rate,a full cell with the ZnO-embedded expanded graphite anode and a LiNi_(0.88)Co_(0.09)Al_(0.03)O_(2)cathode delivers high capacities of 176 mAh g^(-1)at20℃ and 86 mAh g^(-1)at-50℃ at a high rate of 1 C.The outstanding low-temperature performance of the composite anode by improving the Li^(+)diffusion kinetics provides important scientific insights into the fundamental design principles of anodes for low-temperature Li-ion battery operation.
基金supported by National Natural Science Foundation of China(No.U2066601).
文摘The push for renewable energy emphasizes the need for energy storage systems(ESSs)to mitigate the unpre-dictability and variability of these sources,yet challenges such as high investment costs,sporadic utilization,and demand mismatch hinder their broader adoption.In response,shared energy storage systems(SESSs)offer a more cohesive and efficient use of ESS,providing more accessible and cost-effective energy storage solutions to overcome these obstacles.To enhance the profitability of SESSs,this paper designs a multi-time-scale resource allocation strategy based on long-term contracts and real-time rental business models.We initially construct a life cycle cost model for SESS and introduce a method to estimate the degradation costs of multiple battery groups by cycling numbers and depth of discharge within the SESS.Subsequently,we design various long-term contracts from both capacity and energy perspectives,establishing associated models and real-time rental models.Lastly,multi-time-scale resource allocation based on the decomposition of user demand is proposed.Numerical analysis validates that the business model based on long-term contracts excels over models operating solely in the real-time market in economic viability and user satisfaction,effectively reducing battery degradation,and leveraging the aggregation effect for SESS can generate an additional increase of 10.7%in net revenue.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Nos.22101065 and 51972075)the Natural Science Foundation of Heilongjiang Province(No.YQ2021B001)+1 种基金the China Postdoctoral Science Foundation(No.2020M681075)the Fundamental Research Funds for the Central Universities.
文摘Nanostructured aluminum recently delivers a variety of new applications of the earth-abundant Al resource due to the unique properties,but its controllable synthesis remains very challenging with harsh conditions and spontaneously flammable precursors.Herein,a surface group directed method is developed to efficiently achieve low-temperature synthesis and selfassembly of zero-dimensional(0D)Al nanocrystals over one-dimensional(1D)carbon fibers(Al@CFs)through non-flammable AlCl3 reduction at 70°C.Theoretical calculations unveil surface‒OLi groups of carbon fibers exert efficient binding effect to AlCl3,which guides intimate adsorption and in-situ self-assembly of the generated Al nanocrystals.The distinctive 0D-over-1D Al@CFs provides long 1D conductive networks for electron transfer,ultrafine 0D Al nanocrystals for fast lithiation and excellent buffering effect for volume change,thus exhibiting high structure stability and superior lithium storage performance.This work paves the way for mild and controllable synthesis of Al-based nanomaterials for new high-value applications.
基金supported jointly by US NSF grant(No.1548015)National Science Foundation of China(No.51325702)Scientific&Technical Project of State Grid(No.52020114026C).
文摘A power system with a high wind power integration requires extra transmission capacity to accommodate the intermittency inherent to wind power production.Storage can smooth out this intermittency and reduce transmission requirements.This paper proposes a stochastic optimization model to coordinate the long-term planning of both transmission and storage facilities to efficiently integrate wind power.Both longterm and short-term uncertainties are considered in this model.Long-term uncertainty is described via scenarios,while shortterm uncertainty is described via operating conditions.Garver’s 6-node system and a system representing Northwest China in 2030 are used to illustrate the proposed model.Results indicate that storage reduces transmission requirement and the overall investment,and allows the efficient integration of wind power.
基金supported by the Bayer Hemophilia Awards Program as well as the start-up fund from the College of Pharmacy at The Ohio State University.
文摘Lipid-like nanoparticles(LLNs)have been extensively explored for messenger RNA(mRNA)delivery in various biomedical applications.However,the long-term storage of these nanoparticles is still a challenge for their clinical translation.In this study,we investigated a series of conditions for the long-term storage of LLNs with encapsulation of mRNA.We evaluated the stability of LLNs with different concentrations of cryoprotectants(sucrose,trehalose or mannitol)under the conditions of freezing or lyophilization processes.Through in vitro and in vivo mRNA delivery studies,we identified the optimal storage condition,and found that the addition with 5%(w/v)sucrose or trehalose to LLNs could remain their mRNA delivery efficiency for at least three months in the liquid nitrogen storage condition.
基金financially supported by the National Natural Science Foundation of China(No.22076094)the Science&Technology Innovation Program of Shunde of Foshan City(China)(No.2130218002526)and the Tsinghua-Foshan Innovation Special Fund(China)(No.2021THFS0503).
文摘Copper intercalated birnessite MnO_(2)(δ-MnO_(2))with weak crystallinity and high specific surface area(421 m^(2)/g)was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation.The molar ratio of Cu/Mn was as high as 0.37,which greatly weakened the Mn-O bond and created a lot of low-temperature active oxygen species.In situ DRIFTS revealed strong bonding of copper ions with CO.As-synthesized MnO_(2)-150Cu achieved 100%conversion of 250 ppm CO in normal air(3.1 ppm H_(2)O)even at−10°C under the weight-hourly space velocity(WHSV)of 150 L/(g·h).In addition,it showed high oxygen storage capacity to oxidize CO in inert atmosphere.Though the concurrent moisture in air significantly inhibited CO adsorption and its conversion at ambient temperature,MnO_(2)-150Cu could stably convert CO in 1.3%moisture air at 70°C owing to its great low-temperature activity and reduced competitive adsorption of water with increased temperature.This study discovers the excellent low-temperature activity of weakly crystallized δ-MnO_(2) induced by high content intercalated copper ions.
基金UK Engineering and Physical Sciences Research Council(EPSRC)New Investigator Award(2018,EP/R043272/1)Newton Advanced Fellowship(192097)for financial support+3 种基金the Royal Society,the Engineering and Physical Sciences Research Council(EPSRC,EP/R023980/1,EP/V027131/1)the European Research Council(ERC)under the European Union's Horizon 2020 research and innovation program(HYPERION,Grant Agreement Number 756962)the Royal Society and Tata Group(UF150033)EPSRC SPECIFIC IKC(EP/N020863/1)
文摘Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.
基金supported by the National Natural Science Foundation of China(Grant No.51938014,Grant No.22176217,Grant No.22276215)the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China(No.22XNKJ28).
文摘The development of passive NO_(x)adsorbers with cost-benefit and high NO_(x)storage capacity remains an on-going challenge to after-treatment technologies at lower temperatures associated with cold-start NO_(x)emissions.Herein,Cs_(1)Mg_(3)Al catalyst prepared by sol-gel method was cyclic tested in NO_(x)storage under 5 vol%water.At 100°C,the NO_(x)storage capacity(1219 μmol g^(-1))was much higher than that of Pt/BaO/Al_(2)O_(3)(610 μmol g^(-1)).This provided new insights for non-noble metal catalysts in low-temperature passive NO_(x)adsorption.The addition of Cs improved the mobility of oxygen species and thus improved the NO_(x)storage capacity.The XRD,XPS,IR spectra and in situ DRIFTs with NH3 probe showed an interaction between CsO_(x)and AlO_(x)sites via oxygen species formed on Cs_(1)Mg_(3)Al catalyst.The improved mobility of oxygen species inferred from O2-TPD was consistent with high NO_(x)storage capacity related to enhanced formation of nitrate and additional nitrite species by NO_(x)oxidation.Moreover,the addition of Mg might improve the stability of Cs_(1)Mg_(3)Al by stabilizing surface active oxygen species in cyclic experiments.
基金supported by the Lower Saxony State Ministry of Science and Culture and Volkswagen Stiftung within the innovation lab“Wasserstoffregion Nord-West-Niedersachsen(H2-ReNoWe)”.
文摘A hydrogen compressed air energy storage power plant with an integrated electrolyzer is ideal for large-scale,long-term energy storage because of the emission-free operation and the possibility to offer multiple ancillary services on the German energy market.This paper defines analyzes such a storage concept and conducts an extensive comparison with four additional storage concepts based on various criteria.The results show that the combination of storing compressed air and hydrogen offers a higher efficiency than storing only hydrogen and lower specific investment costs than storing only compressed air.This result is confirmed with analysis of the optimal sizing of each power plant component for simultaneous participation on multiple energy markets with a linear optimization dispatch mode.The hydrogen compressed air energy storage(HCAES)power plant can utilize more revenue possibilities than a hydrogen energy storage because of the higher round-trip efficiency and the combination of the air compressor and the integrated electrolyzer during charging mode.The integration of the electrolyzer,however,offers a couple of challenges itself because of the highly flexible operation mode.A new concept for the controllable 24-pulse diode-thyristor rectifier of the electrolyzer is presented,that uses mostly common components while offering little to no grid harmonics and a long lifetime.The flexible integrated electrolyzer allows for the 4-quadrant operation of the storage power plant.