Ecosystems in high-altitude regions are more sensitive and respond more rapidly than other ecosystems to global climate warming.The Qinghai-Tibet Plateau(QTP)of China is an ecologically fragile zone that is sensitive ...Ecosystems in high-altitude regions are more sensitive and respond more rapidly than other ecosystems to global climate warming.The Qinghai-Tibet Plateau(QTP)of China is an ecologically fragile zone that is sensitive to global climate warming.It is of great importance to study the changes in aboveground biomass and species diversity of alpine meadows on the QTP under predicted future climate warming.In this study,we selected an alpine meadow on the QTP as the study object and used infrared radiators as the warming device for a simulation experiment over eight years(2011-2018).We then analyzed the dynamic changes in aboveground biomass and species diversity of the alpine meadow at different time scales,including an early stage of warming(2011-2013)and a late stage of warming(2016-2018),in order to explore the response of alpine meadows to short-term(three years)and long-term warming(eight years).The results showed that the short-term warming increased air temperature by 0.31℃and decreased relative humidity by 2.54%,resulting in the air being warmer and drier.The long-term warming increased air temperature and relative humidity by 0.19℃and 1.47%,respectively,and the air tended to be warmer and wetter.The short-term warming increased soil temperature by 2.44℃and decreased soil moisture by 12.47%,whereas the long-term warming increased soil temperature by 1.76℃and decreased soil moisture by 9.90%.This caused the shallow soil layer to become warmer and drier under both short-term and long-term warming.Furthermore,the degree of soil drought was alleviated with increased warming duration.Under the long-term warming,the importance value and aboveground biomass of plants in different families changed.The importance values of grasses and sedges decreased by 47.56%and 3.67%,respectively,while the importance value of weeds increased by 1.37%.Aboveground biomass of grasses decreased by 36.55%,while those of sedges and weeds increased by 8.09%and 15.24%,respectively.The increase in temperature had a non-significant effect on species diversity.The species diversity indices increased at the early stage of warming and decreased at the late stage of warming,but none of them reached significant levels(P>0.05).Species diversity had no significant correlation with soil temperature and soil moisture under both short-term and long-term warming.Soil temperature and aboveground biomass were positively correlated in the control plots(P=0.014),but negatively correlated under the long-term warming(P=0.013).Therefore,eight years of warming aggravated drought in the shallow soil layer,which is beneficial for the growth of weeds but not for the growth of grasses.Warming changed the structure of alpine meadow communities and had a certain impact on the community species diversity.Our studies have great significance for the protection and effective utilization of alpine vegetation,as well as for the prevention of grassland degradation or desertification in high-altitude regions.展开更多
To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This...An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This study evaluates the performance of 39 climate models participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating the WACE pattern in winter of 1980-2014 and explores the key factors causing the differences in the simulation capability among the models.The results show that the multimodel ensemble(MME)can better simulate the spatial distribution of the WACE pattern than most single models.Models that can/cannot simulate both the climatology and the standard deviation of the Eurasian winter surface air temperature well,especially the latter,usually can/cannot simulate the WACE pattern well.This mainly results from the different abilities of the models to simulate the range and intensity of the warm anomaly in the Barents Sea-Kara seas(BKS)region.Further analysis shows that a good performance of the models in the BKS area is usually related to their ability to simulate location and persistence of Ural blocking(UB),which can transport heat to the BKS region,causing the warm Arctic,and strengthen the westerly trough downstream,cooling central Eurasia.Therefore,simulation of UB is key and significantly affects the model’s performance in simulating the WACE.展开更多
During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil d...During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.展开更多
Most climate models project a weakening of the Walker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rai...Most climate models project a weakening of the Walker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase, which leads to a decrease in ascending motion. Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator, we find that the Walker circulation is strengthened under a uniform 2-K SST warming, even though the global mean rainfall-moisture relationship remains the same. Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere. As a result, a "double-cell" circulation change pattern with a clockwise (anti-clockwise) circulation anomaly in the upper (lower) troposphere forms, and the upper tropospheric circulation change dominates. The mechanism for the formation of the "double cell" circulation pattern is attributed to a larger (smaller) rate of increase of diabatic heating than static stability in the upper (lower) troposphere. The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument.展开更多
In order to assess the performance of two versions of the IAP/LASG Flexible Global Ocean-Atmosphere- Land System (FGOALS) model, simulated changes in surface air temperature (SAT), from natural and an- thropogenie...In order to assess the performance of two versions of the IAP/LASG Flexible Global Ocean-Atmosphere- Land System (FGOALS) model, simulated changes in surface air temperature (SAT), from natural and an- thropogenie forcings, were compared to observations for the period 1850-2005 at global, hemispheric, conti- nental and regional scales. The global and hemispheric averages of SAT and their land and ocean components during 1850-2005 were well reproduced by FGOALS-g2, as evidenced by significant correlation coefficients and small RMSEs. The significant positive correlations were firstly determined by the warming trends, and secondly by interdecadal fluctuations. The abilities of the models to reproduce interdecadal SAT variations were demonstrated by both wavelet analysis and significant positive correlations for detrended data. The observed land-sea thermal contrast change was poorly simulated. The major weakness of FGOALS-s2 was an exaggerated warming response to anthropogenic forcing, with the simulation showing results that were far removed from observations prior to the 1950s. The observations featured warming trends (1906-2005) of 0.71, 0.68 and 0.79℃ (100 yr)-1 for global, Northern and Southern Hemispheric averages, which were overestimated by FGOALS-s2 [1.42, 1.52 and 1.13~C (100 yr)-1] but underestimated by FGOALS-g2 [0.69, 0.68 and 0.73~C (100 yr)-l]. The polar amplification of the warming trend was exaggerated in FGOALS- s2 but weakly reproduced in FGOALS-g2. The stronger response of FGOALS-s2 to anthropogenic forcing was caused by strong sea-ice albedo feedback and water vapor feedback. Examination of model results in 15 selected subcontinental-scale regions showed reasonable performance for FGOALS-g2 over most regions. However, the observed warming trends were overestimated by FGOALS-s2 in most regions. Over East Asia, the meridional gradient of the warming trend simulated by FGOALS-s2 (FGOALS-g2) was stronger (weaker) than observed.展开更多
Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and...Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010-2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in Octo- ber 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control (CK), warming (W), clipping (C) and warming+clipping combination (WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0-30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0-60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0-30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40-100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30-50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the down- ward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen However, long-term data collection is needed to further explain this interesting phenomenon.展开更多
A severe drought occurred in East China(EC)from August to October 2019 against a background of long-term significant warming and caused widespread impacts on agriculture and society,emphasizing the urgent need to unde...A severe drought occurred in East China(EC)from August to October 2019 against a background of long-term significant warming and caused widespread impacts on agriculture and society,emphasizing the urgent need to understand the mechanism responsible for this drought and its linkage to global warming.Our results show that the warm central equatorial Pacific(CEP)sea surface temperature(SST)and anthropogenic warming were possibly responsible for this drought event.The warm CEP SST anomaly resulted in an anomalous cyclone over the western North Pacific,where enhanced northerly winds in the northwestern sector led to decreased water vapor transport from the South China Sea and enhanced descending air motion,preventing local convection and favoring a precipitation deficiency over EC.Model simulations in the Community Earth System Model Large Ensemble Project confirmed the physical connection between the warm CEP SST anomaly and the drought in EC.The extremely warm CEP SST from August to October 2019,which was largely the result of natural internal variability,played a crucial role in the simultaneous severe drought in EC.The model simulations showed that anthropogenic warming has greatly increased the frequency of extreme droughts in EC.They indicated an approximate twofold increase in extremely low rainfall events,high temperature events,and concurrently dry and hot events analogous to the event in 2019.Therefore,the persistent severe drought over EC in 2019 can be attributed to the combined impacts of warm CEP SST and anthropogenic warming.展开更多
During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors whi...During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.展开更多
Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room te...Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room temperature in the automotive industry.However,material at elevated temperature behaves more differently than at room temperature and specific material parameters and models need to be developed for the simulation of warm forming.Based on the experimental investigation of material behavior of high strength aluminum alloy 7075(AA7075),constitutive equations with strain rate sensitivity at 140,180 and 220 ℃ are developed.Anisotropic yield criterion Barlat 89 is used in the simulation.Warm forming of limit dome height tests and limit drawing ratio tests of AA7075 at 140,180 and 220℃are performed.Forming limit diagrams developed from experiment at several elevated temperatures in the previous study are used to predict the failure in the simulation results.Punch force and displacement predicted from simulation are compared with the experimental data.Simulation results agree with experimental results,so the developed material model can be used to accurately predict material behavior during isothermal warm forming of the AA7075-T6 alloy.展开更多
Using the World Meteorological Organization definition and a threshold-based classification technique,simulations of vortex displacement and split sudden stratospheric warmings(SSWs)are evaluated for four Chinese mode...Using the World Meteorological Organization definition and a threshold-based classification technique,simulations of vortex displacement and split sudden stratospheric warmings(SSWs)are evaluated for four Chinese models(BCC-CSM2-MR,FGOALS-f3-L,FGOALS-g3,and NESM3)from phase 6 of the Coupled Model Intercomparison Project(CMIP6)with the Japanese 55-year reanalysis(JRA-55)as a baseline.Compared with six or seven SSWs in a decade in JRA-55,three models underestimate the SSW frequency by~50%,while NESM3 doubles the SSW frequency.SSWs mainly appear in midwinter in JRA-55,but one-month climate drift is simulated in the models.The composite of splits is stronger than displacements in both the reanalysis and most models due to the longer pulse of positive eddy heat flux before onset of split SSWs.A wavenumber-1-like temperature anomaly pattern(cold Eurasia,warm North America)before onset of displacement SSWs is simulated,but cold anomalies are mainly confined to North America after displacement SSWs.Although the lower tropospheric temperature also displays a wavenumber-1-like pattern before split SSWs,most parts of Eurasia and North America are covered by cold anomalies after split SSWs in JRA-55.The models have different degrees of fidelity for the temperature anomaly pattern before split SSWs,but the wavenumber-2-like temperature anomaly pattern is well simulated after split SSWs.The center of the negative height anomalies in the Pacific sector before SSWs is sensitive to the SSW type in both JRA-55 and the models.A negative North Atlantic Oscillation is simulated after both types of SSWs in the models,although it is only observed for split SSWs.展开更多
The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (...The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjiang discharge is much larger in May than in November, and the wind is westward in May, and southward in November off the Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoffnear the mouth and the TWC offthe mouth, and the runoff and TWC are greater in May than in November.展开更多
Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by st...Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by studying model simulations under different scenarios.The global mean temperatures from pre-industrial control runs(pi Control),historical(all forcings)simulations,natural forcing only simulations(Historical Nat),greenhouse gas forcing only simulations(Historical GHG),etc.,are analyzed using the detrended fluctuation analysis.The authors find that the LTM already exists in the pi Control simulations,indicating the important roles of internal natural variability in producing the LTM.By comparing the results among different scenarios,the LTM from the piControl runs is further found to be strengthened by adding natural forcings such as the volcanic forcing and the solar forcing.Accordingly,the observed LTM in the climate system is suggested to be mainly controlled by both the‘internal’natural variability and the‘external’natural forcings.The anthropogenic forcings,however,may weaken the LTM.In the projections from RCP2.6 to RCP8.5,a weakening trend of the LTM strength is found.In view of the close relations between the climate memory and the climate predictability,a reduced predictability may be expected in a warming climate.展开更多
Urban-related warming in two first-tier cities(Guangzhou and Shenzhen)in southern China with similar large-scale climatic backgrounds was compared using the nested weather research and forecasting regional climate mod...Urban-related warming in two first-tier cities(Guangzhou and Shenzhen)in southern China with similar large-scale climatic backgrounds was compared using the nested weather research and forecasting regional climate model.The default urban data in the model were replaced by reconstructed annual urban data retrieved from satellite-based images for both coarse-(including all of China)and fine-resolution domains(eastern China and three city clusters in China:Beijing– Tianjin–Hebei(BTH),the Yangtze River Delta(YRD),and the Pearl River Delta(PRD)),which reproduced urban surface expansion during the past few decades.The results showed that the 37-year(1980–2016)area-averaged annual urban-related warming was similar(0.69°C/0.64°C)between the urban areas of Guangzhou/Shenzhen;however,the values across the entire area of the two cities varied(0.21°C/0.45°C).Seasonal characteristics could be detected for mean surface air temperatures(SAT)at 2 m,SAT maximum and minimum,and diurnal temperature range(DTR).Both the SAT maximum and minimum generally increased,especially over urban areas;however,changes in the SAT minimum were larger,which induced a decrease in DTR.The DTR in summer decreased by-0.25°C/-0.86°C across the entire area of the two cities and decreased by-0.93°C/-1.15°C over urban areas.The contributions of urban surface expansion to regional warming across the entire area of the two cities were approximately 17%/35%of the overall warming and much greater over Shenzhen.However,the values over urban areas were much closer to the values from total warming(35%/44%).展开更多
Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment s...Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.展开更多
Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the po...Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the polar vortices,and stratospheric Planetary Waves(PWs)by analyzing and comparing their trends.Interestingly,within overall increasing trends,the duration and strength of SSWs exhibit increasing and decreasing trends before and after the winter of 2002,respectively.To reveal possible physical mechanisms driving these trends,we analyzed the long-term trends of the winter(from December to February)polar vortices and of stratospheric PWs with zonal wave number 1.Notably,our results show that in all three time periods(the entire period of 41winters,1980 to 2020,and the two subperiods—1980-2002 and 2002-2020)enhancing SSWs were always accompanied by weakening winter polar vortices and strengthening polar PWs like Stationary Planetary Waves(SPWs)and 16-day waves,and vice versa.This is the first proof,based on ERA5 long-term trend data,that weakening polar vortices and enhancing stratospheric PWs(especially SPWs)could cause an increase in SSWs.展开更多
In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement wa...In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement was simulated based on actual meteorological data of Nanjing. 24-hour rutting development under a transient temperature field was calculated in each month. The rutting depth accumulated under the static temperature field was also estimated and the relationship between constant temperature parameters was analyzed. Then the effective temperature for pavement rutting was determined based on the rutting equivalence principle. The results show that the monthly effective temperature is above 40 t in July and August, while in June and September it ranges from 30 to 40 Rutting development can be ignored when the monthly effective temperature is less than 30 t. The yearly effective temperature for rutting in Nanjing is around 38. 5 t. The long-term rutting prediction model based on the effective temperature can reflect the influences of meteorological factors and traffic time distribution.展开更多
基金This study was financially supported by the National Natural Science Foundation of China(41501219)the Applied Basic Research Project of Shanxi Province(2016021136)+2 种基金the National College Students'Innovative Entrepreneurial Training Plan Program of China(201910119007)the Research Project of Philosophy and Social Sciences in Colleges and Universities of Shanxi Province(2019W134)the Soft Science Research Project of Shanxi Province(2018041072-1).
文摘Ecosystems in high-altitude regions are more sensitive and respond more rapidly than other ecosystems to global climate warming.The Qinghai-Tibet Plateau(QTP)of China is an ecologically fragile zone that is sensitive to global climate warming.It is of great importance to study the changes in aboveground biomass and species diversity of alpine meadows on the QTP under predicted future climate warming.In this study,we selected an alpine meadow on the QTP as the study object and used infrared radiators as the warming device for a simulation experiment over eight years(2011-2018).We then analyzed the dynamic changes in aboveground biomass and species diversity of the alpine meadow at different time scales,including an early stage of warming(2011-2013)and a late stage of warming(2016-2018),in order to explore the response of alpine meadows to short-term(three years)and long-term warming(eight years).The results showed that the short-term warming increased air temperature by 0.31℃and decreased relative humidity by 2.54%,resulting in the air being warmer and drier.The long-term warming increased air temperature and relative humidity by 0.19℃and 1.47%,respectively,and the air tended to be warmer and wetter.The short-term warming increased soil temperature by 2.44℃and decreased soil moisture by 12.47%,whereas the long-term warming increased soil temperature by 1.76℃and decreased soil moisture by 9.90%.This caused the shallow soil layer to become warmer and drier under both short-term and long-term warming.Furthermore,the degree of soil drought was alleviated with increased warming duration.Under the long-term warming,the importance value and aboveground biomass of plants in different families changed.The importance values of grasses and sedges decreased by 47.56%and 3.67%,respectively,while the importance value of weeds increased by 1.37%.Aboveground biomass of grasses decreased by 36.55%,while those of sedges and weeds increased by 8.09%and 15.24%,respectively.The increase in temperature had a non-significant effect on species diversity.The species diversity indices increased at the early stage of warming and decreased at the late stage of warming,but none of them reached significant levels(P>0.05).Species diversity had no significant correlation with soil temperature and soil moisture under both short-term and long-term warming.Soil temperature and aboveground biomass were positively correlated in the control plots(P=0.014),but negatively correlated under the long-term warming(P=0.013).Therefore,eight years of warming aggravated drought in the shallow soil layer,which is beneficial for the growth of weeds but not for the growth of grasses.Warming changed the structure of alpine meadow communities and had a certain impact on the community species diversity.Our studies have great significance for the protection and effective utilization of alpine vegetation,as well as for the prevention of grassland degradation or desertification in high-altitude regions.
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金the National Natural Science Foundation of China(Grant Nos.41790471,42075040,and U1902209)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20100304)the National Key Research and Development Program of China(2018YFA0606203,2019YFC1510400).
文摘An enhanced Warm Arctic-Cold Eurasia(WACE)pattern has been a notable feature in recent winters of the Northern Hemisphere.However,divergent results between model and observational studies of the WACE still remain.This study evaluates the performance of 39 climate models participating in the Coupled Model Intercomparison Project Phase 6(CMIP6)in simulating the WACE pattern in winter of 1980-2014 and explores the key factors causing the differences in the simulation capability among the models.The results show that the multimodel ensemble(MME)can better simulate the spatial distribution of the WACE pattern than most single models.Models that can/cannot simulate both the climatology and the standard deviation of the Eurasian winter surface air temperature well,especially the latter,usually can/cannot simulate the WACE pattern well.This mainly results from the different abilities of the models to simulate the range and intensity of the warm anomaly in the Barents Sea-Kara seas(BKS)region.Further analysis shows that a good performance of the models in the BKS area is usually related to their ability to simulate location and persistence of Ural blocking(UB),which can transport heat to the BKS region,causing the warm Arctic,and strengthen the westerly trough downstream,cooling central Eurasia.Therefore,simulation of UB is key and significantly affects the model’s performance in simulating the WACE.
基金financial supports for this research project by the National Natural Science Foundation of China(Nos.41602308,41967037)supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LY20E080005+1 种基金funded by National Key Research and Development Projects of China(No.2019YFC507502)Guangxi Science and Technology Plan Project(No.RZ2100000161).
文摘During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.
基金sponsored by the China National 973 Program (Grant No.2015CB453200)the National Natural Science Foundation of China (Grant No.41475084)+2 种基金the China Scholarship Councilthe Office of Naval Research (ONR,Grant Nos.N00014-1210450 and ARCP2013-27NSY-Liu)partially sponsored by the Japan Agency for Marine-Earth Science and Technology
文摘Most climate models project a weakening of the Walker circulation under global warming scenarios. It is argued, based on a global averaged moisture budget, that this weakening can be attributed to a slower rate of rainfall increase compared to that of moisture increase, which leads to a decrease in ascending motion. Through an idealized aqua-planet simulation in which a zonal wavenumber-1 SST distribution is prescribed along the equator, we find that the Walker circulation is strengthened under a uniform 2-K SST warming, even though the global mean rainfall-moisture relationship remains the same. Further diagnosis shows that the ascending branch of the Walker cell is enhanced in the upper troposphere but weakened in the lower troposphere. As a result, a "double-cell" circulation change pattern with a clockwise (anti-clockwise) circulation anomaly in the upper (lower) troposphere forms, and the upper tropospheric circulation change dominates. The mechanism for the formation of the "double cell" circulation pattern is attributed to a larger (smaller) rate of increase of diabatic heating than static stability in the upper (lower) troposphere. The result indicates that the future change of the Walker circulation cannot simply be interpreted based on a global mean moisture budget argument.
基金supported by the National High Technology Research and Development Program of China(Grant No.2010AA012304)National Program on Key Basic Research Project of China(Grant No.2010CB951904)NSFC project(Grant No.41125017)
文摘In order to assess the performance of two versions of the IAP/LASG Flexible Global Ocean-Atmosphere- Land System (FGOALS) model, simulated changes in surface air temperature (SAT), from natural and an- thropogenie forcings, were compared to observations for the period 1850-2005 at global, hemispheric, conti- nental and regional scales. The global and hemispheric averages of SAT and their land and ocean components during 1850-2005 were well reproduced by FGOALS-g2, as evidenced by significant correlation coefficients and small RMSEs. The significant positive correlations were firstly determined by the warming trends, and secondly by interdecadal fluctuations. The abilities of the models to reproduce interdecadal SAT variations were demonstrated by both wavelet analysis and significant positive correlations for detrended data. The observed land-sea thermal contrast change was poorly simulated. The major weakness of FGOALS-s2 was an exaggerated warming response to anthropogenic forcing, with the simulation showing results that were far removed from observations prior to the 1950s. The observations featured warming trends (1906-2005) of 0.71, 0.68 and 0.79℃ (100 yr)-1 for global, Northern and Southern Hemispheric averages, which were overestimated by FGOALS-s2 [1.42, 1.52 and 1.13~C (100 yr)-1] but underestimated by FGOALS-g2 [0.69, 0.68 and 0.73~C (100 yr)-l]. The polar amplification of the warming trend was exaggerated in FGOALS- s2 but weakly reproduced in FGOALS-g2. The stronger response of FGOALS-s2 to anthropogenic forcing was caused by strong sea-ice albedo feedback and water vapor feedback. Examination of model results in 15 selected subcontinental-scale regions showed reasonable performance for FGOALS-g2 over most regions. However, the observed warming trends were overestimated by FGOALS-s2 in most regions. Over East Asia, the meridional gradient of the warming trend simulated by FGOALS-s2 (FGOALS-g2) was stronger (weaker) than observed.
基金financially supported by the Hundred Talent Program of Chinese Academy of Sciences and the National Natural Science Foundation of China (41301211, 41201195)
文摘Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010-2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in Octo- ber 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control (CK), warming (W), clipping (C) and warming+clipping combination (WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0-30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0-60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0-30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40-100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30-50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the down- ward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen However, long-term data collection is needed to further explain this interesting phenomenon.
基金the National Key R&D Program(Grant No.2018YFC1505904)the National Natural Science Foundation of China(Grant Nos.41830969 and 41705052)the Basic Scientific Research and Operation Foundation of CAMS(Grant No.2018Z006).
文摘A severe drought occurred in East China(EC)from August to October 2019 against a background of long-term significant warming and caused widespread impacts on agriculture and society,emphasizing the urgent need to understand the mechanism responsible for this drought and its linkage to global warming.Our results show that the warm central equatorial Pacific(CEP)sea surface temperature(SST)and anthropogenic warming were possibly responsible for this drought event.The warm CEP SST anomaly resulted in an anomalous cyclone over the western North Pacific,where enhanced northerly winds in the northwestern sector led to decreased water vapor transport from the South China Sea and enhanced descending air motion,preventing local convection and favoring a precipitation deficiency over EC.Model simulations in the Community Earth System Model Large Ensemble Project confirmed the physical connection between the warm CEP SST anomaly and the drought in EC.The extremely warm CEP SST from August to October 2019,which was largely the result of natural internal variability,played a crucial role in the simultaneous severe drought in EC.The model simulations showed that anthropogenic warming has greatly increased the frequency of extreme droughts in EC.They indicated an approximate twofold increase in extremely low rainfall events,high temperature events,and concurrently dry and hot events analogous to the event in 2019.Therefore,the persistent severe drought over EC in 2019 can be attributed to the combined impacts of warm CEP SST and anthropogenic warming.
文摘During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.
文摘Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room temperature in the automotive industry.However,material at elevated temperature behaves more differently than at room temperature and specific material parameters and models need to be developed for the simulation of warm forming.Based on the experimental investigation of material behavior of high strength aluminum alloy 7075(AA7075),constitutive equations with strain rate sensitivity at 140,180 and 220 ℃ are developed.Anisotropic yield criterion Barlat 89 is used in the simulation.Warm forming of limit dome height tests and limit drawing ratio tests of AA7075 at 140,180 and 220℃are performed.Forming limit diagrams developed from experiment at several elevated temperatures in the previous study are used to predict the failure in the simulation results.Punch force and displacement predicted from simulation are compared with the experimental data.Simulation results agree with experimental results,so the developed material model can be used to accurately predict material behavior during isothermal warm forming of the AA7075-T6 alloy.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA17010105)the National Key R&D Program of China(Grant No.2016YFA0602104).
文摘Using the World Meteorological Organization definition and a threshold-based classification technique,simulations of vortex displacement and split sudden stratospheric warmings(SSWs)are evaluated for four Chinese models(BCC-CSM2-MR,FGOALS-f3-L,FGOALS-g3,and NESM3)from phase 6 of the Coupled Model Intercomparison Project(CMIP6)with the Japanese 55-year reanalysis(JRA-55)as a baseline.Compared with six or seven SSWs in a decade in JRA-55,three models underestimate the SSW frequency by~50%,while NESM3 doubles the SSW frequency.SSWs mainly appear in midwinter in JRA-55,but one-month climate drift is simulated in the models.The composite of splits is stronger than displacements in both the reanalysis and most models due to the longer pulse of positive eddy heat flux before onset of split SSWs.A wavenumber-1-like temperature anomaly pattern(cold Eurasia,warm North America)before onset of displacement SSWs is simulated,but cold anomalies are mainly confined to North America after displacement SSWs.Although the lower tropospheric temperature also displays a wavenumber-1-like pattern before split SSWs,most parts of Eurasia and North America are covered by cold anomalies after split SSWs in JRA-55.The models have different degrees of fidelity for the temperature anomaly pattern before split SSWs,but the wavenumber-2-like temperature anomaly pattern is well simulated after split SSWs.The center of the negative height anomalies in the Pacific sector before SSWs is sensitive to the SSW type in both JRA-55 and the models.A negative North Atlantic Oscillation is simulated after both types of SSWs in the models,although it is only observed for split SSWs.
文摘The circulations off the Changjiang mouth in May and November were simulated by a three dimension numerical model with monthly averaged parameters of dynamic factors in this paper. The area covers the East China Sea (ECS), Yellow Sea and Bohai Sea. Simulated results show that the circulation off the Changjiang mouth in spring and autumn is mainly the Changjiang runoff and Taiwan Warm Current (TWC). The Changjiang discharge is much larger in May than in November, and the wind is westward in May, and southward in November off the Changjiang mouth. The runoff in May branches in three parts, one eastward flows, the other two flow northward and southward along the Subei and Zhejiang coast respectively. The Changjiang diluted water expands eastward off the mouth, and forms a strong salinity front near the mouth. Surface circulation in autumn is similar to that in winter, the runoff southward flows along the coast, and the northward flowing TWC becomes weaker compared to that in spring and summer. The bottom circulations in May and November are mainly the runoffnear the mouth and the TWC offthe mouth, and the runoff and TWC are greater in May than in November.
基金supported by the National Natural Science Foundation of China grant number 41675088the CAS Pioneer Hundred Talents Program。
文摘Long-term memory(LTM)in the climate system has been well recognized and applied in different research fields,but the origins of this property are still not clear.In this work,the authors contribute to this issue by studying model simulations under different scenarios.The global mean temperatures from pre-industrial control runs(pi Control),historical(all forcings)simulations,natural forcing only simulations(Historical Nat),greenhouse gas forcing only simulations(Historical GHG),etc.,are analyzed using the detrended fluctuation analysis.The authors find that the LTM already exists in the pi Control simulations,indicating the important roles of internal natural variability in producing the LTM.By comparing the results among different scenarios,the LTM from the piControl runs is further found to be strengthened by adding natural forcings such as the volcanic forcing and the solar forcing.Accordingly,the observed LTM in the climate system is suggested to be mainly controlled by both the‘internal’natural variability and the‘external’natural forcings.The anthropogenic forcings,however,may weaken the LTM.In the projections from RCP2.6 to RCP8.5,a weakening trend of the LTM strength is found.In view of the close relations between the climate memory and the climate predictability,a reduced predictability may be expected in a warming climate.
基金supported by the National Natural Science Foundation of China(Grant Nos.41775087 and 41675149)the National Key Research and Development Program of China(Grant No.2016YFA0600403)+1 种基金the Chinese Academy of Sciences Strategic Priority Program(Grant No.XDA05090206)the Jiangsu Collaborative Innovation Center for Climatic Change
文摘Urban-related warming in two first-tier cities(Guangzhou and Shenzhen)in southern China with similar large-scale climatic backgrounds was compared using the nested weather research and forecasting regional climate model.The default urban data in the model were replaced by reconstructed annual urban data retrieved from satellite-based images for both coarse-(including all of China)and fine-resolution domains(eastern China and three city clusters in China:Beijing– Tianjin–Hebei(BTH),the Yangtze River Delta(YRD),and the Pearl River Delta(PRD)),which reproduced urban surface expansion during the past few decades.The results showed that the 37-year(1980–2016)area-averaged annual urban-related warming was similar(0.69°C/0.64°C)between the urban areas of Guangzhou/Shenzhen;however,the values across the entire area of the two cities varied(0.21°C/0.45°C).Seasonal characteristics could be detected for mean surface air temperatures(SAT)at 2 m,SAT maximum and minimum,and diurnal temperature range(DTR).Both the SAT maximum and minimum generally increased,especially over urban areas;however,changes in the SAT minimum were larger,which induced a decrease in DTR.The DTR in summer decreased by-0.25°C/-0.86°C across the entire area of the two cities and decreased by-0.93°C/-1.15°C over urban areas.The contributions of urban surface expansion to regional warming across the entire area of the two cities were approximately 17%/35%of the overall warming and much greater over Shenzhen.However,the values over urban areas were much closer to the values from total warming(35%/44%).
基金supported by the Ministry of Science and Technology of China(2006BAJ04A01 and 2006BAJ03A04-01)
文摘Dynamic environmental testing is an effective means to study the energy and long-term hygrothermal performance of building enclosures. Southeast University is designing and building a large-scale dynamic environment simulation testing facility. It can simuhaneously and dynamically simulate temperature, relative humidity, infrared solar radiation, UV radiation, and precipitation. A transformation is needed to predict the energy and long-term hygrothermal performance of building enclosures under real service conditions using data obtained from accelerated tests.
基金supported by the National Key RandD Program of China(2022YFF0503703)the National Natural Science Foundation of China(through grant42127805)。
文摘Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the polar vortices,and stratospheric Planetary Waves(PWs)by analyzing and comparing their trends.Interestingly,within overall increasing trends,the duration and strength of SSWs exhibit increasing and decreasing trends before and after the winter of 2002,respectively.To reveal possible physical mechanisms driving these trends,we analyzed the long-term trends of the winter(from December to February)polar vortices and of stratospheric PWs with zonal wave number 1.Notably,our results show that in all three time periods(the entire period of 41winters,1980 to 2020,and the two subperiods—1980-2002 and 2002-2020)enhancing SSWs were always accompanied by weakening winter polar vortices and strengthening polar PWs like Stationary Planetary Waves(SPWs)and 16-day waves,and vice versa.This is the first proof,based on ERA5 long-term trend data,that weakening polar vortices and enhancing stratospheric PWs(especially SPWs)could cause an increase in SSWs.
基金The National Natural Science Foundation of China(No.51378121)the Fok Ying Tung Education Foundation(No.141076)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0164)
文摘In order to predict the long-term rutting of asphalt pavement, the effective temperature for pavement rutting is calculated using the numerical simulation method. The transient temperature field of asphalt pavement was simulated based on actual meteorological data of Nanjing. 24-hour rutting development under a transient temperature field was calculated in each month. The rutting depth accumulated under the static temperature field was also estimated and the relationship between constant temperature parameters was analyzed. Then the effective temperature for pavement rutting was determined based on the rutting equivalence principle. The results show that the monthly effective temperature is above 40 t in July and August, while in June and September it ranges from 30 to 40 Rutting development can be ignored when the monthly effective temperature is less than 30 t. The yearly effective temperature for rutting in Nanjing is around 38. 5 t. The long-term rutting prediction model based on the effective temperature can reflect the influences of meteorological factors and traffic time distribution.