Since a thrust of an ion rocket engine is much weaker than the one of a chemical fuel engine, nowadays, ion engines are used mainly in spaces where gravities are very weak. Here, as a powerful plasma rocket to make a ...Since a thrust of an ion rocket engine is much weaker than the one of a chemical fuel engine, nowadays, ion engines are used mainly in spaces where gravities are very weak. Here, as a powerful plasma rocket to make a heavy ship get out from the gravity-sphere of the earth without relying on an atomic power rocket, an ion-velocity booster is investigated. It is a main challenge how to protect the engine wall from the melting due to collisions of ions which grow into high-energy particles.展开更多
Seeds of two-line sterile rice cultivars Zhu 1S and Lu 18S were carried into space by "Shijian 8" breeding recoverable satellite, then planted in ground. Mutagenic effects from space induction were compared with tho...Seeds of two-line sterile rice cultivars Zhu 1S and Lu 18S were carried into space by "Shijian 8" breeding recoverable satellite, then planted in ground. Mutagenic effects from space induction were compared with those from y-irradiation and complex processing of space induction and y-irradiation. The results showed that agronomic effect was stimulated in Mo progenies of the two-line sterile rice varieties treated by space flight, and their radiosensitivities to the irradiation of space flight performed non-sensitive. The order of mutation frequency was determined to be SP + γ 〉 γ 〉 SP in M2 generation. And a series of mutated elites(individuals) were screened. Physiological indices of mutants screened like the activity of protective enzymes were measured to explore the physiological and biochemical basis of biological effect in space environment to two-line sterile rice. The results of this study show that space mutation breeding is an effective novel mean for breeding.展开更多
In this note, we design a velocity-altitude map for hypersonic level flight in near space of altitude 20-100 km. This map displays aerodynamic-related parameters associated with near space level flight, schematically ...In this note, we design a velocity-altitude map for hypersonic level flight in near space of altitude 20-100 km. This map displays aerodynamic-related parameters associated with near space level flight, schematically or quantitatively. Various physical conditions for the near-space level flight are then characterized, including laminar or turbulent flow, rarefaction or continuous flow, aerodynamic heating, as well as conditions for sustaining level flight with and without orbital effect. This map allows one to identify conditions to have soft flight or hard flight, and this identification would be helpful for making correct planning on detailed studies of aerodynamics or making initial design of near space vehicles.展开更多
Recently,studies on the extent to which spaceflight affects the psychology of individuals has received attention.In order to reveal the mental challenges that humans face in space,we need practical viewpoints to integ...Recently,studies on the extent to which spaceflight affects the psychology of individuals has received attention.In order to reveal the mental challenges that humans face in space,we need practical viewpoints to integrate the psychological effects,behavior,performance and the environment itself for space exploration.The present review discusses the individual variables related to space psychology and manned spaceflight,in addition to their growing trends.These items include patterns of emotional changes in extreme environments and the approaches to evaluating emotions.Moreover,the review concludes with suggested future research on emotion during spaceflight and its analogs.These data and information are needed to plan for the exploration of the Moon and Mars,along with contributions to the construction of the international space station(ISS) and astronaut training.展开更多
The objective of this review is to discuss the changes in human biology and physiology that occur when humans, who evolved on Earth for millions of years, now are subjected to space flight for extended periods of time...The objective of this review is to discuss the changes in human biology and physiology that occur when humans, who evolved on Earth for millions of years, now are subjected to space flight for extended periods of time, and how detailing such changes associated with space flight could help better understand risks for loss of health on Earth. Space programs invest heavily in the selection and training of astronauts. They also are investing in maintaining the health of astronauts, both for extensive stays in low earth orbit on ISS, and in preparation for deep space missions in the future. This effort is critical for the success of such missions as the N is small and the tasks needed to be performed in a hostile environment are complex and demanding. However, space is a unique environment, devoid of many of the “boundary conditions” that shaped human evolution (e.g. 1 g environment, magnetic fields, background radiation, oxygen, water, etc). Therefore, for humans to be successful in space, we need to learn to adapt and minimize the impact of an altered environment on human health. Conversely, we can also learn considerably from this altered environment for life on earth. The question is, are we getting the maximal information from life in space to learn about like on earth? The answer is likely No, and as such, our “Return on Investment” is not as great as it could be. Even though the number of astronauts is not large, what we can learn from them could help shape new questions for research focused on health for those on earth, as well is contribute to “precision health” from the study of astronaut diversity. This latter effort would contribute to both the health of astronauts identifying risks, as well as contribute to health on earth via better understanding of the human genome and epigenome, as well as factors contributing to risk for diseases on earth, particularly as individuals age and regulatory systems become altered. Better use of the International Space Station, and similar platforms in the future, could provide critical insights in aging-associated risks for loss of health on Earth, as well as promote new approaches to using precision medicine to overcome threats to health while in space. To achieve this goal will likely require advanced approaches to collecting such information and use of more systems biology, systems physiology approaches to integrate the information.展开更多
Exposure to thermal environment is one of the main concerns for manned space exploration. By focusing on the works performed on thermoregulation at microgravity or simulated microgravity, we endeavored to review the i...Exposure to thermal environment is one of the main concerns for manned space exploration. By focusing on the works performed on thermoregulation at microgravity or simulated microgravity, we endeavored to review the investigation on space thermal environmental physiology. First of all, the application of medical requirements for the crew module design from normal thermal comfort to accidental thermal emergencies in a space craft will be addressed. Then, alterations in the autonomic and behavioral temperature regulation caused by the effect of weightlessness both in space flight and its simulation on the ground are also discussed. Furthermore, countermeasures like exercise training, simulated natural ventilation, encouraged drink, etc., in the protection of thermoregulation during space flight is presented. Finally, the challenge of space thermal environment physiology faced in the future is figured out.展开更多
[Objective] The paper was to understand the physiological response of space flight mutation new strains of Festuca arundinacea to high temperature stress. [Method] The influence of high temperature stress on eco-physi...[Objective] The paper was to understand the physiological response of space flight mutation new strains of Festuca arundinacea to high temperature stress. [Method] The influence of high temperature stress on eco-physiological characteristics of 11 F. arundinacea materials was studied in a pot experiment.Physiological and biochemical indexes,including soluble protein content,superoxide dismutase( SOD),peroxidase( POD) and catalase( CAT) activities,were measured and analyzed once every 4 d for a total of three times. Subordinate function and grey rational analysis were used to comprehensively evaluate the heat resistance of 11 materials. [Result] The soluble protein content decreased with the extension of heat resistance stress,while SOD,POD and CAT activities showed an upward trend. The high temperature resistance of 11 F. arundinacea materials was evaluated by subordinate function method. The resistance order was SP5-85> SP5-60 > SP5-71 > SP5-42 > SP5-94 > SP5-7 > SP5-88 > F. arundinacea cv Shuicheng > SP5-5 > SP5-89 = F. arundinacea cv Qiancao No. 1. The relational order of various heat resistance indexes and heat resistance obtained by grey rational analysis was SOD > CAT > POD > soluble protein content. [Conclusion]The result provides a theoretical basis for stress physiology and stress breeding of cold season grass in southwest region.展开更多
As a unique form of abiotic stress, the environmental conditions of outer space are expected to induce changes in plant genomes, proteomes and metabolic pathways. However, the effect of outer space conditions on the o...As a unique form of abiotic stress, the environmental conditions of outer space are expected to induce changes in plant genomes, proteomes and metabolic pathways. However, the effect of outer space conditions on the overall physiology of plants at the protein level has yet to be reported. To investigate the effects of outer space conditions on the growth-and development-related physiological processes and metabolic pathways of rice different stages, the seeds of rice variety DN423 were sent into orbit for 12.5 d aboard the SJ-10 Returning Satellite, and then the seedlings of both treated and control rice were compared at the three-leaf stage(TLS) and tillering stage(TS). In addition to comparing plant growth and reactive oxygen species(ROS) levels, seedling proteomes were also compared using isobaric tags for relative and absolute quantitation(i TRAQ). Space flight increased TLS plant height by 20%, reduced and increased ROS levels of the TLS and TS seedlings, respectively, and affected the expression of 36 and 323 proteins in TLS and TS leaves, respectively. Furthermore, the functions of the differentially abundant proteins were mainly associated with metabolism, energy, and protein synthesis and degradation. These results suggested that the exposure of seeds to outer space conditions affects the subsequent abundance of key signaling proteins, gene expression, and the processes of protein synthesis and degradation, thereby affecting metabolic processes and promoting adaptation to the abiotic stress of outer space. As such, the present study sheds light on the effects of space flight on plants and contributes to a more comprehensive understanding of extraterrestrial biology.展开更多
This paper briefly introduces the history of China's Manned Space Flight Program and concludes the experiments done since 2008,namely,a small satellite and a material science experiment.An outlook of future Chines...This paper briefly introduces the history of China's Manned Space Flight Program and concludes the experiments done since 2008,namely,a small satellite and a material science experiment.An outlook of future Chinese Space Station is also described at the end.展开更多
Amazing achievements and accomplishments of space science and technologies in the past half-century have profoundly affected all disciplines of natural science and engineering. By the end of 20(th) Century, man or man...Amazing achievements and accomplishments of space science and technologies in the past half-century have profoundly affected all disciplines of natural science and engineering. By the end of 20(th) Century, man or man-made spacecrafts landed, or approached and surveyed all planets of solar system and their moons except Pluto. Biologists believe that life may emerge and evolve wherever liquid water exists. No liquid water is ever found yet on all planets and their moons in Solar System except for our Earth. Our mother planet turned out to be the only life-supporting oasis within 4 light years of the Milky Way. It is suggested in this article that time has come for science and engineering communities to study and prepare interstellar flight of manned or unmanned spacecrafts beyond Solar System. Four issues are to be addressed as prerequisite for such flight, namely, detailed survey of nearby space beyond Solar System, design of nuclear fusion rocket engine, long-sustainable on-board life-supporting system and breakthrough of the light barrier.展开更多
空间站在轨组装和长期运营阶段涉及到多飞行器独立飞行、飞行器间交会对接、多飞行器组合体融合控制、多飞行器分离过程控制和飞行器返回再入等复杂飞行任务,完整、真实的飞行模拟是必需且至关重要的.基于时间同步、实时数据交换的分布...空间站在轨组装和长期运营阶段涉及到多飞行器独立飞行、飞行器间交会对接、多飞行器组合体融合控制、多飞行器分离过程控制和飞行器返回再入等复杂飞行任务,完整、真实的飞行模拟是必需且至关重要的.基于时间同步、实时数据交换的分布式一体化仿真架构,设计了一种多飞行器协同的通用半物理制导、导航与控制(guidance,navigation and control,GNC)系统飞行模拟平台,可很好地满足复杂系统的飞行模拟需要.平台由若干灵活、可扩展的通用模拟器构成,单个模拟器通过配置可以实现任一飞行器的功能,能够独立对指定飞行器的全任务过程进行仿真.平台通过靶场仪器组B时间码(inter-range instramentation group-B,IRIG-B)信号进行时间同步,利用1553B总线完成动力学仿真数据实时交换,并在多模拟器之间通过协调机制实现热并网后进行协同仿真.该模拟平台成功应用于空间站飞行控制演练.展开更多
文摘Since a thrust of an ion rocket engine is much weaker than the one of a chemical fuel engine, nowadays, ion engines are used mainly in spaces where gravities are very weak. Here, as a powerful plasma rocket to make a heavy ship get out from the gravity-sphere of the earth without relying on an atomic power rocket, an ion-velocity booster is investigated. It is a main challenge how to protect the engine wall from the melting due to collisions of ions which grow into high-energy particles.
基金Supported by The Ministry of National Agricultural Special PublicSector Research "Nuclear Technology Application in Agriculture"(No.200803034)Science and Technology Innovation Projects ofHunan Academy of Agricultural Sciences(2009hnnkycx13)the National Science&Technology Pillar Program in the Eleventh Five-year Plan period(2008BAD7B02)~~
文摘Seeds of two-line sterile rice cultivars Zhu 1S and Lu 18S were carried into space by "Shijian 8" breeding recoverable satellite, then planted in ground. Mutagenic effects from space induction were compared with those from y-irradiation and complex processing of space induction and y-irradiation. The results showed that agronomic effect was stimulated in Mo progenies of the two-line sterile rice varieties treated by space flight, and their radiosensitivities to the irradiation of space flight performed non-sensitive. The order of mutation frequency was determined to be SP + γ 〉 γ 〉 SP in M2 generation. And a series of mutated elites(individuals) were screened. Physiological indices of mutants screened like the activity of protective enzymes were measured to explore the physiological and biochemical basis of biological effect in space environment to two-line sterile rice. The results of this study show that space mutation breeding is an effective novel mean for breeding.
基金supported by the National Natural Science Foundation of China (90716009)
文摘In this note, we design a velocity-altitude map for hypersonic level flight in near space of altitude 20-100 km. This map displays aerodynamic-related parameters associated with near space level flight, schematically or quantitatively. Various physical conditions for the near-space level flight are then characterized, including laminar or turbulent flow, rarefaction or continuous flow, aerodynamic heating, as well as conditions for sustaining level flight with and without orbital effect. This map allows one to identify conditions to have soft flight or hard flight, and this identification would be helpful for making correct planning on detailed studies of aerodynamics or making initial design of near space vehicles.
基金funded by the Main Test Technique Research Program of China(2011CB711000)the“973”Project(2011CB711001 and 2011CB505101)the Key Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu(2015ZSJD001-01)
文摘Recently,studies on the extent to which spaceflight affects the psychology of individuals has received attention.In order to reveal the mental challenges that humans face in space,we need practical viewpoints to integrate the psychological effects,behavior,performance and the environment itself for space exploration.The present review discusses the individual variables related to space psychology and manned spaceflight,in addition to their growing trends.These items include patterns of emotional changes in extreme environments and the approaches to evaluating emotions.Moreover,the review concludes with suggested future research on emotion during spaceflight and its analogs.These data and information are needed to plan for the exploration of the Moon and Mars,along with contributions to the construction of the international space station(ISS) and astronaut training.
文摘The objective of this review is to discuss the changes in human biology and physiology that occur when humans, who evolved on Earth for millions of years, now are subjected to space flight for extended periods of time, and how detailing such changes associated with space flight could help better understand risks for loss of health on Earth. Space programs invest heavily in the selection and training of astronauts. They also are investing in maintaining the health of astronauts, both for extensive stays in low earth orbit on ISS, and in preparation for deep space missions in the future. This effort is critical for the success of such missions as the N is small and the tasks needed to be performed in a hostile environment are complex and demanding. However, space is a unique environment, devoid of many of the “boundary conditions” that shaped human evolution (e.g. 1 g environment, magnetic fields, background radiation, oxygen, water, etc). Therefore, for humans to be successful in space, we need to learn to adapt and minimize the impact of an altered environment on human health. Conversely, we can also learn considerably from this altered environment for life on earth. The question is, are we getting the maximal information from life in space to learn about like on earth? The answer is likely No, and as such, our “Return on Investment” is not as great as it could be. Even though the number of astronauts is not large, what we can learn from them could help shape new questions for research focused on health for those on earth, as well is contribute to “precision health” from the study of astronaut diversity. This latter effort would contribute to both the health of astronauts identifying risks, as well as contribute to health on earth via better understanding of the human genome and epigenome, as well as factors contributing to risk for diseases on earth, particularly as individuals age and regulatory systems become altered. Better use of the International Space Station, and similar platforms in the future, could provide critical insights in aging-associated risks for loss of health on Earth, as well as promote new approaches to using precision medicine to overcome threats to health while in space. To achieve this goal will likely require advanced approaches to collecting such information and use of more systems biology, systems physiology approaches to integrate the information.
基金supported by the National Natural Science Foundation of China(50838003)the China Manned Space flight Project
文摘Exposure to thermal environment is one of the main concerns for manned space exploration. By focusing on the works performed on thermoregulation at microgravity or simulated microgravity, we endeavored to review the investigation on space thermal environmental physiology. First of all, the application of medical requirements for the crew module design from normal thermal comfort to accidental thermal emergencies in a space craft will be addressed. Then, alterations in the autonomic and behavioral temperature regulation caused by the effect of weightlessness both in space flight and its simulation on the ground are also discussed. Furthermore, countermeasures like exercise training, simulated natural ventilation, encouraged drink, etc., in the protection of thermoregulation during space flight is presented. Finally, the challenge of space thermal environment physiology faced in the future is figured out.
基金Supported by United Fund of Guizhou Province(QKH J LKN[2013]24)Key Special Project of Guizhou Province(QKHZDZX[2014]6017)High-level Innovative Talents Training of Guizhou Province(QKHRC[2016]4024)
文摘[Objective] The paper was to understand the physiological response of space flight mutation new strains of Festuca arundinacea to high temperature stress. [Method] The influence of high temperature stress on eco-physiological characteristics of 11 F. arundinacea materials was studied in a pot experiment.Physiological and biochemical indexes,including soluble protein content,superoxide dismutase( SOD),peroxidase( POD) and catalase( CAT) activities,were measured and analyzed once every 4 d for a total of three times. Subordinate function and grey rational analysis were used to comprehensively evaluate the heat resistance of 11 materials. [Result] The soluble protein content decreased with the extension of heat resistance stress,while SOD,POD and CAT activities showed an upward trend. The high temperature resistance of 11 F. arundinacea materials was evaluated by subordinate function method. The resistance order was SP5-85> SP5-60 > SP5-71 > SP5-42 > SP5-94 > SP5-7 > SP5-88 > F. arundinacea cv Shuicheng > SP5-5 > SP5-89 = F. arundinacea cv Qiancao No. 1. The relational order of various heat resistance indexes and heat resistance obtained by grey rational analysis was SOD > CAT > POD > soluble protein content. [Conclusion]The result provides a theoretical basis for stress physiology and stress breeding of cold season grass in southwest region.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC160900)Planning Project for Space Application(Grant No.01-1-08)。
文摘As a unique form of abiotic stress, the environmental conditions of outer space are expected to induce changes in plant genomes, proteomes and metabolic pathways. However, the effect of outer space conditions on the overall physiology of plants at the protein level has yet to be reported. To investigate the effects of outer space conditions on the growth-and development-related physiological processes and metabolic pathways of rice different stages, the seeds of rice variety DN423 were sent into orbit for 12.5 d aboard the SJ-10 Returning Satellite, and then the seedlings of both treated and control rice were compared at the three-leaf stage(TLS) and tillering stage(TS). In addition to comparing plant growth and reactive oxygen species(ROS) levels, seedling proteomes were also compared using isobaric tags for relative and absolute quantitation(i TRAQ). Space flight increased TLS plant height by 20%, reduced and increased ROS levels of the TLS and TS seedlings, respectively, and affected the expression of 36 and 323 proteins in TLS and TS leaves, respectively. Furthermore, the functions of the differentially abundant proteins were mainly associated with metabolism, energy, and protein synthesis and degradation. These results suggested that the exposure of seeds to outer space conditions affects the subsequent abundance of key signaling proteins, gene expression, and the processes of protein synthesis and degradation, thereby affecting metabolic processes and promoting adaptation to the abiotic stress of outer space. As such, the present study sheds light on the effects of space flight on plants and contributes to a more comprehensive understanding of extraterrestrial biology.
文摘This paper briefly introduces the history of China's Manned Space Flight Program and concludes the experiments done since 2008,namely,a small satellite and a material science experiment.An outlook of future Chinese Space Station is also described at the end.
文摘Amazing achievements and accomplishments of space science and technologies in the past half-century have profoundly affected all disciplines of natural science and engineering. By the end of 20(th) Century, man or man-made spacecrafts landed, or approached and surveyed all planets of solar system and their moons except Pluto. Biologists believe that life may emerge and evolve wherever liquid water exists. No liquid water is ever found yet on all planets and their moons in Solar System except for our Earth. Our mother planet turned out to be the only life-supporting oasis within 4 light years of the Milky Way. It is suggested in this article that time has come for science and engineering communities to study and prepare interstellar flight of manned or unmanned spacecrafts beyond Solar System. Four issues are to be addressed as prerequisite for such flight, namely, detailed survey of nearby space beyond Solar System, design of nuclear fusion rocket engine, long-sustainable on-board life-supporting system and breakthrough of the light barrier.
文摘空间站在轨组装和长期运营阶段涉及到多飞行器独立飞行、飞行器间交会对接、多飞行器组合体融合控制、多飞行器分离过程控制和飞行器返回再入等复杂飞行任务,完整、真实的飞行模拟是必需且至关重要的.基于时间同步、实时数据交换的分布式一体化仿真架构,设计了一种多飞行器协同的通用半物理制导、导航与控制(guidance,navigation and control,GNC)系统飞行模拟平台,可很好地满足复杂系统的飞行模拟需要.平台由若干灵活、可扩展的通用模拟器构成,单个模拟器通过配置可以实现任一飞行器的功能,能够独立对指定飞行器的全任务过程进行仿真.平台通过靶场仪器组B时间码(inter-range instramentation group-B,IRIG-B)信号进行时间同步,利用1553B总线完成动力学仿真数据实时交换,并在多模拟器之间通过协调机制实现热并网后进行协同仿真.该模拟平台成功应用于空间站飞行控制演练.