期刊文献+
共找到6,173篇文章
< 1 2 250 >
每页显示 20 50 100
Improving the operational stability of perovskite solar cells with cesium-doped graphene oxide interlayer
1
作者 Masaud Almalki Katerina Anagnostou +15 位作者 Konstantinos Rogdakis Felix T.Eickemeyer Mostafa Othman Minas M.Stylianakis Dimitris Tsikritzis Anwar Q.Alanazi Nikolaos Tzoganakis Lukas Pfeifer Rita Therisod Xiaoliang Mo Christian M.Wolff Aïcha Hessler-Wyser Shaik M.Zakeeruddin Hong Zhang Emmanuel Kymakis Michael Grätzel 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期483-490,共8页
Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and t... Perovskite solar cells(PSCs)have made great advances in terms of power conversion efficiency(PCE),yet their subpar stability continues to hinder their commercialization.The interface between the perovskite layer and the charge-carrier transporting layers plays a crucial role in undermining the stability of PSCs.In this work,we propose a strategy to stabilize high-performance PSCs with PCE over 23%by introducing a cesium-doped graphene oxide(GO-Cs)as an interlayer between the perovskite and hole-transporting material.The GO-Cs treated PSCs exhibit excellent operational stability with a projected T80(the time where the device PCE reduces to 80%of its initial value)of 2143 h of operation at the maximum powering point under one sun illumination. 展开更多
关键词 Perovskite solar cells Doped graphene oxide Graphene related material long-term operational stability
下载PDF
Highly defective HKUST-1 with excellent stability and SO_(2) uptake: The hydrophobic armor effect of functionalized ionic liquids
2
作者 Ping Liu Kaixing Cai +2 位作者 Keliang Wang Tianxiang Zhao Duan-Jian Tao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1711-1723,共13页
Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI... Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions. 展开更多
关键词 Metal organic frameworks SO_(2)adsorption water stability MECHANOCHEMISTRY Ionic liquids
下载PDF
Retrospective Case Series on The Enduring Rotational Stability of The AcrySof IQ Toric Intraocular Lens in Cataract Patients Suffering from Myopia
3
作者 Jie Luo Yang Liu +2 位作者 Bing Wang Lei Li Junyu Yang 《Journal of Clinical and Nursing Research》 2024年第3期207-214,共8页
Objective:To analyze the enduring rotational steadiness of AcrySof IQ Toric intraocular lens(IOL)in cataract patients suffering from myopia in a long-term study.Methods:A retrospective study was conducted on a case se... Objective:To analyze the enduring rotational steadiness of AcrySof IQ Toric intraocular lens(IOL)in cataract patients suffering from myopia in a long-term study.Methods:A retrospective study was conducted on a case series involving 78 patients.A total of 120 eyes with an axial length(AL)ranging from 24-30 mm and corneal astigmatism≥1.50 D underwent implantation of AcrySof IQ Toric IOL guided by the version navigation system.The eyes were divided into two groups based on AL.Group A included 60 eyes with high myopia(AL≥26 mm),while Group B consisted of eyes with low to moderate myopia(24 mm≤AL<26 mm).Data on the preoperative AL were collected.Measurements were taken for residual astigmatism,the best corrected visual acuity(BCDVA),corneal astigmatism,and IOL rotation occurring between 24-and 48-months post-surgery.The percentage of eyes with an IOL rotation of under 5°and 10°was analyzed.Results:The mean length of follow-up times was recorded as 34.27±4.98,and the average rotation was 2.73±1.29°.Group A exhibited a slightly higher average rotation of 2.87±1.31°,compared to the rotation of 2.59±1.27°observed in Group B.At both the 24-36 month and 26-48 month post-operation marks,the degree of IOL rotation did not show a statistically significant difference between the two groups,with none of the patients experiencing a rotation exceeding 10°(P>0.05).The percentage of rotation degrees under 5°was recorded as 98.22%.After the procedure,the BCDVA was 0.1322±0.03 LogMAR.There was a substantial increase in theχvalue after the operation as compared to the pre-operativeχ^(2) value(χ^(2)=76.79).The standard deviation of preoperative corneal astigmatism was statistically significant(P<0.05)at 2.17±1.08 D.Following the surgical procedure,the remaining astigmatism was measured at 0.41±0.26 D.The data showed a notable gap in statistical significance(t=4.281,P<0.05).Conclusion:The AcrySof Toric IOL was a reliable solution for managing corneal astigmatism in cataract patients with myopia,demonstrating excellent long-term rotational stability. 展开更多
关键词 ASTIGMATISM long-term MYOPIA Rotational stability
下载PDF
Application of an amphipathic molecule at the NiO_(x)/perovskite interface for improving the efficiency and long-term stability of the inverted perovskite solar cells
4
作者 Guibin Shen Hongye Dong +4 位作者 Fan Yang Xin Ren Ng Xin Li Fen Lin Cheng Mu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期454-462,I0013,共10页
The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphi... The presence of defects and detrimental reactions at NiO_(x)/perovskite interface extremely limit the efficiency performance and long-term stability of the perovskite solar cells(PSCs) based on NiO_(x).Herein,an amphipathic molecule Triton X100(Triton) is modified on the NiO_(x)surface.The hydrophilic chain of Triton as a Lewis base additive can coordinate with the Ni3+on the NiO_(x)surface which can passivate the interfacial defects and hinder the detrimental reactions at the NiO_(x)/perovskite interface.Additionally,the hydrophobic chain of Triton protrudes from the NiO_(x)surface to prevent moisture from penetrating into the NiO_(x)/perovskite interface.Consequently,the NiO_(x)/Triton-based devices(MAPbI3as absorbing layer) show superior moisture and thermal stability,retaining 88.4% and 64.3% of the initial power conversion efficiency after storage in air(40%-50% relative humidity(RH)) at 25 ℃ for 1070 h and in N2at 85℃ for 800 h,respectively.Moreover,the efficiency increases from 17.59% to 19.89% because of the passivation defect and enhanced hole-extraction capability.Besides,the NiO_(x)/Triton-based PSCs with Cs_(0.05)(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))3perovskite as the light-absorbing layer also exhibits better moisture and thermal stability compared to the control devices,indicating the viability of our strategies.Of particular note,a champion PCE of 22.35% and 20.46% was achieved for small-area(0.1 cm^(2)) and large-area(1.2 cm^(2)) NiO_(x)/Triton-based devices,respectively. 展开更多
关键词 Perovskite solar cells NiO_(x) Defect passivation long-term stability Amphipathic molecule
下载PDF
Non-Fullerene-Based Inverted Organic Photovoltaic Device with Long-Term Stability
5
作者 Do Hui Kim Febrian T.A.Wibowo +4 位作者 Dongchan Lee Narra V.Krishna Sujung Park Shinuk Cho Sung-Yeon Jang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期214-221,共8页
In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.... In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.The deep defects between the metal oxide-based electron transport layer and bulk-heterojunction photoactive layer interface were responsible for suboptimal PCE and facilitated degradation of devices.While the density of deep traps is increased during the storage of i-OPV,the penetrative oxygen-containing defects additionally generated shallow traps below the band-edge of Y6,causing an additional loss in the open-circuit voltage.The suppression of interfacial defects by chemical modification effectively improved the PCE and long-term stability of i-OPV.The modified i-OPV(mi-OPV)achieved a PCE of 17.42%,which is the highest value among the reported PM6:Y6-based i-OPV devices.Moreover,long-term stability was significantly improved:~90%and~80%retention of its initial PCE after 1200 h of air storage and illumination,respectively. 展开更多
关键词 deep trap inverted structure long-term stability organic photovoltaic power conversion efficiency
下载PDF
Water Stability Improvement of Acid Fine Aggregate-Based Asphalt Concrete
6
作者 Yihan Sun Lihua Chu +3 位作者 Yudong Cheng Fengxia Chi Chenchen Zhang Pengcheng Sun 《Fluid Dynamics & Materials Processing》 EI 2023年第8期2171-2180,共10页
In general,acid aggregates are not used in combination with asphalt concrete because of their poor compatibility with the asphalt binder,which typically results in a scarce water stability of the concrete.In the prese... In general,acid aggregates are not used in combination with asphalt concrete because of their poor compatibility with the asphalt binder,which typically results in a scarce water stability of the concrete.In the present study,the feasibility of a new approach based on the combination of acid granite fine aggregate with alkaline limestone coarse aggregate and Portland cement filler has been assessed.The mineral and chemical compositions of these three materials have first been analyzed and compared.Then,the effect of different amounts of Portland cement(0%,25%,50%,75%and 100%of the total filler by weight)on the mechanical performance and water stability of the asphalt concrete has been considered.Asphalt concrete has been designed by using the Marshall method,and the mechanical performance indexes of this material,including the Marshall stability and indirect tensile strength(ITS),have been measured together with the related water stability indexes(namely the Marshall stability(RMS)and tensile strength ratio(TSR)).The results indicate that the alkaline limestone coarse aggregate and Portland cement filler can balance the drawback caused by the acid granite fine aggregate.The asphalt concrete has good mechanical performances and water stability when the amount of common limestone powder filler replaced by cement is not less than 75%. 展开更多
关键词 LIMESTONE GRANITE portland cement asphalt concrete mechanical performance water stability
下载PDF
Novel protection systems for the improvement in soil and water stability of expansive soil slopes
7
作者 MA Shao-kun HE Ben-fu +3 位作者 MA Min HUANG Zhen CHEN Sheng-jia YUE Huan 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3066-3083,共18页
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group... To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects. 展开更多
关键词 Soil and water stability Expansive soil slope Polymer waterproof coating Model test Soil erosion
下载PDF
Influence of Seasonal Ground Water Level Fluctuations on the Stability of the Rohingya Refugee Camp Hills of Ukhiya, Teknaf, Cox’s Bazar, Bangladesh—A Threat for Sustainable Development
8
作者 Abu Taher Mohammad Shakhawat Hossain Sheikh Jafia Jafrin +7 位作者 Purba Anindita Khan Mahmuda Khatun Tanmoy Dutta Mohammad Hasan Imam Ruma Bakali Mohammad Hossain Sayem Mohammad Shakil Mahabub Mohammad Emdadul Haque 《Journal of Geoscience and Environment Protection》 2023年第5期384-403,共20页
Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the ... Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the Kutubpalong & Balukhali Rohingya camp area. An attempt has been made to see the influence of seasonal variation of ground water level (G.W.L.) fluctuations on the stability of the eco hills and forests of Ukhiya Teknaf region. Ukhiya hills are in great danger because of cutting trees from the hill slopes and it is well established that due to recent change of climate, short term rainfall for few consecutive days during monsoon might show an influence on the factor of safety (Fs) values of the camp hill slopes. A clear G.W.L. variation between dry and wet seasons has an influence on the stability (Fs) values indicating that climate has a strong influence on the stability and threatening sustainable development. A stable or marginally stable slope might be unstable during raining and show a variation of ground water level (G.W.L.). The generation of pore water pressure (P.W.P.) is also influenced by seasonal variation of ground water level. During wet season negative P.W.P. called suction plays an important role to occur slope failures in the Ukhiya hills. Based on all calculated factor of safety values (Fs) at different locations, four (4) susceptible landslide risk zones are identified. They are very high risk (Fs = 0.18 to 0.46), high risk (Fs = 0.56 to 0.75), medium risk (Fs = 0.76 to 1.0) and marginally stable areas (Fs ≈ 1). Proper geo-engineering measures must be taken by the concerned authorizes to reduce P.W.P. during monsoon by installing rain water harvesting system, allowing sufficient drainage & other geotechnical measures to reduce the risk of slope failures in the Ukhiya hills. Based on the stability factor (Fs) at different slope locations of the camp hills, a risk map of the investigated area has been produced for the local community for their safety and to build up awareness & to motivate them to evacuate the site during monsoonal slope failures. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of landslide risks in the investigated area. 展开更多
关键词 stability Pore water Pressure Ground water Level Rain & Risk Map
下载PDF
Preliminary Study on the Effect of Different Ecological Cultivation Modes on the Water Stability of Soil Aggregates in Rubber Based Agroforestry Systems
9
作者 Shiyun Zhan Fengyue Qin +4 位作者 Dongling Qi Zhixiang Wu Chuan Yang Yingying Zhang Qingmao Fu 《Open Journal of Ecology》 2023年第11期782-793,共12页
Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical re... Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance. 展开更多
关键词 Ecological Complex Cultivation Rubber Plantation Soil Aggregates Soil Aggregate water stability Rubber Based Agroforestry Systems
下载PDF
Could Long-Term Stability Last Forever?
10
作者 Maria K. Koleva 《Journal of Modern Physics》 CAS 2023年第4期450-460,共11页
The subject of the present paper is to prove that the recently introduced conjecture of boundedness puts a ban over the view of stability as asymptotic property. This result comes in sharp contrast with the prescripti... The subject of the present paper is to prove that the recently introduced conjecture of boundedness puts a ban over the view of stability as asymptotic property. This result comes in sharp contrast with the prescription of the traditional thermodynamics and statistical physics which consider the existence of equilibrium as asymptotic property of all systems. The difference commences from the use of infinitesimal calculus as the basic implement for modelling by the latter while the primary premise of the conjecture of boundedness is sustaining the energy/matter/information permanently bounded and finite. The latter property overrules the infinitesimal calculus as the major implement of modelling because, among all, it is proven that the traditional one suffers unsoluble difficulties. 展开更多
关键词 long-term stability Equilibrium Infinitesimal Calculus BOUNDEDNESS Decomposition Theorem Certain Information Universal Mechanism for Collapse
下载PDF
Preparation and stability of zinc ferrite nano-particle suspension of ammonia-water solution
11
作者 杨柳 杜垲 +1 位作者 张小松 牛晓峰 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期368-371,共4页
In order to apply nano-particles to the ammonia-water absorption refrigeration, the zinc ferrite nano-particles suspension of ammonia-water solution with the mixed surfactants of sodium dodecyl benzene sulfonate (SDB... In order to apply nano-particles to the ammonia-water absorption refrigeration, the zinc ferrite nano-particles suspension of ammonia-water solution with the mixed surfactants of sodium dodecyl benzene sulfonate (SDBS) and cetyl trimethyl ammonium bromide (CTAB) is prepared. A series of experiments is performed to investigate the stability of the prepared nanofluid with different contents and proportions of surfactants, different durations of ultrasonic wave vibration and different durations of illumination. The optimal dispersion conditions are 1.5% SDBS, 0. 015% CTAB(mass fraction), 30 min of ultrasonic vibration and over 72 h of illumination. Finally, based on double electrode layer theory, the influences of the content of the surfactants on the stability of nanofluid are analyzed. The existence of the optimal surfactant content is proved, which is in accordance with the experimental results. 展开更多
关键词 NANOFLUID stability SURFACTANT ammonia water
下载PDF
Effects of long-term grazing exclusion on vegetation structure,soil water holding capacity,carbon and nitrogen sequestration capacity in an alpine meadow on the Tibetan Plateau 被引量:2
12
作者 YANG Yong-sheng ZHANG Fa-wei +5 位作者 XIE Xian-rong WANG Jun-bang LI Ying-nian HUANG Xiao-tao LI Hui-ting ZHOU Hua-kun 《Journal of Mountain Science》 SCIE CSCD 2023年第3期779-791,共13页
Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring d... Grazing exclusion is one of the primary management practices used to restore degraded grasslands on the Tibetan Plateau.However,to date,the effects of long-term grazing exclusion measures on the process of restoring degraded alpine meadows have not been evaluated.In this study,moderately degraded plots,in which the vegetation coverage was approximately 65%and the dominant plant species was Potentilla anserina L,with grazing exclusion for 2 to 23 years,were selected in alpine meadows of Haibei in Qinghai-Tibet Plateau.Plant coverage,plant height,biomass,soil bulk density,saturated water content,soil organic carbon(SOC)and total nitrogen(TN)were evaluated.The results were as follows:(1)With aboveground biomass and total saturated water content at 0-40 cm depth,the average SOC and TN contents in moderately degraded alpine meadows increased as a power function,and the plant height increased as a log function.(2)The average soil bulk density at 0-40 cm depth first decreased and then increased with increasing grazing exclusion duration,and the minimum value of 0.90 g·cm^(-3) was reached at 15.23 years.The plant coverage,total belowground biomass at 0-40 cm depth,total aboveground and belowground biomass first increased and then decreased,their maximum values(80.49%,2452.92g·m^(-2),2891.06 g·m^(-2))were reached at 9.41,9.46 and 10.25 years,respectively.Long-term grazing exclusion is apparently harmful for the sustainable restoration of degraded alpine meadows.The optimal duration of grazing exclusion for the restoration of moderately degraded alpine meadows was 10 years.This research suggests that moderate disturbance should be allowed in moderately degraded alpine meadows after 10years of grazing exclusion. 展开更多
关键词 long-term grazing exclusion Soil water holdingcapacity Soilcarbonand nitrogen sequestration BIOMASS Alpine meadow
下载PDF
Handily etching nickel foams into catalyst-substrate fusion self‐stabilized electrodes toward industrial‐level water electrolysis 被引量:2
13
作者 Zexuan Zhu Xiaotian Yang +2 位作者 Jiao Liu Mingze Zhu Xiaoyong Xu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第10期2-12,共11页
The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the ba... The key challenge of industrial water electrolysis is to design catalytic electrodes that can stabilize high current density with low power consumption(i.e.,overpotential),while industrial harsh conditions make the balance between electrode activity and stability more difficult.Here,we develop an efficient and durable electrode for water oxidation reaction(WOR),which yields a high current density of 1000 mA cm−2 at an overpotential of only 284 mV in 1M KOH at 25°C and shows robust stability even in 6M KOH strong alkali with an elevated temperature up to 80°C.This electrode is fabricated from a cheap nickel foam(NF)substrate through a simple one-step solution etching method,resulting in the growth of ultrafine phosphorus doped nickel-iron(oxy)hydroxide[P-(Ni,Fe)O_(x)H_(y)]nanoparticles embedded into abundant micropores on the surface,featured as a self-stabilized catalyst–substrate fusion electrode.Such self-stabilizing effect fastens highly active P-(Ni,Fe)O_(x)H_(y)species on conductive NF substrates with significant contribution to catalyst fixation and charge transfer,realizing a win–win tactics for WOR activity and durability at high current densities in harsh environments.This work affords a cost-effective WOR electrode that can well work at large current densities,suggestive of the rational design of catalyst electrodes toward industrial-scale water electrolysis. 展开更多
关键词 alkaline water electrolysis industrially relevant conditions oxygen evolution reaction self‐stabilized electrodes
下载PDF
Enhancing the stability of planar perovskite solar cells by green and inexpensive cellulose acetate butyrate 被引量:1
14
作者 Bo Xiao Yongxin Qian +5 位作者 Xin Li Yang Tao Zijun Yi Qinghui Jiang Yubo Luo Junyou Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期259-265,I0007,共8页
Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-frie... Although the efficiency of organic–inorganic hybrid halide perovskite solar cells has been improved rapidly, the intrinsic instability of perovskite materials restricts their commercial application. Here, an eco-friendly and low-cost organic polymer, cellulose acetate butyrate(CAB), was introduced to the grain boundaries and surfaces of perovskite, resulting in a high-quality and low-defect perovskite film with a nearly tenfold improvement in carrier lifetime. More importantly, the CAB-treated perovskite films have a well-matched energy level with the charge transport layers, thus suppressing carrier nonradiative recombination and carrier accumulation. As a result, the optimized CAB-based device achieved a champion efficiency of 21.5% compared to the control device(18.2%). Since the ester group in CAB bonds with Pb in perovskite, and the H and O in the hydroxyl group bond with the I and organic cations in perovskite,respectively, it will contribute to superior stability under heat, high humidity, and light soaking conditions. After aging under 35% humidity(relative humidity, RH) for 3300 h, the optimized device can still maintain more than 90% of the initial efficiency;it can also retain more than 90% of the initial efficiency after aging at 65 ℃, 65% RH, or light(AM 1.5G) for 500 h. This simple optimization strategy for perovskite stability could facilitate the commercial application of perovskite solar cells. 展开更多
关键词 Planar perovskite solar cells long-term stability Organic polymer Well-matched energy level Charge transportation and extraction
下载PDF
Wheat Grain Yield and Yield Stability in a Long-Term Fertilization Experiment on the Loess Plateau 被引量:28
15
作者 HAO Ming-De FAN Jun +3 位作者 WANG Quan-Jiu DANG Ting-Hui GUO Sheng-Li WANG Ji-Jun 《Pedosphere》 SCIE CAS CSCD 2007年第2期257-264,共8页
To provide a scientific basis for sustainable land management, a 20-year fertility experiment was conducted in Changwu County, Shaanxi Province, China to investigate the effects of long-term application of chemical fe... To provide a scientific basis for sustainable land management, a 20-year fertility experiment was conducted in Changwu County, Shaanxi Province, China to investigate the effects of long-term application of chemical fertilizers on wheat grain yield and yield stability on the Loess Plateau using regression and stability analysis. The experiment consisted of 17 fertilizer treatments, containing the combinations of different N and P levels, with three replications arranged in a randomized complete block design. Nitrogen fertilizer was applied as urea, and P was applied as calcium superphosphate. Fertilizer rates had a large effect on the response of wheat yield to fertilization. Phosphorus, combined with N, increased yield significantly (P 〈 0.01). In the unfertilized control and the N or P sole application treatments, wheat yield had a declining trend although it was not statistically significant. Stability analysis combined with the trend analysis indicated that integrated use of fertilizer N and P was better than their sole application in increasing and sustaining the productivity of rainfed winter wheat. 展开更多
关键词 dryland wheat yield long-term fertilization nitrogen PHOSPHORUS yield stability
下载PDF
Formation and Water Stability of Aggregates in Red Soils as Affected by Organic Matter 被引量:39
16
作者 ZHANG MINGKUI HE ZHENLI +1 位作者 CHEN GUOCHAO HUANG CHANGYONGI andM. J. WILSON ̄2( ̄1DePartment of Land Use and Applied Chemistry, Zhejiang Agricultural University, Hangzhou 31O029(China))( ̄2Soils and Soil Microbiology Division, Macaulay Land Use Research Inst 《Pedosphere》 SCIE CAS CSCD 1996年第1期39-45,共7页
The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studi... The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.smm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils. 展开更多
关键词 AGGREGATE free oxides organic matter red soil water stability
下载PDF
Stability analysis of different cotton genotypes under normal and water-deficit conditions 被引量:5
17
作者 Muhammad Riaz Jehanzeb Farooq +4 位作者 Saghir Ahmed Muhammad Amin Waqas Shafqat Chattha Maria Ayoub Riaz Ahmed Kainth 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第6期1257-1265,共9页
Cotton plant observes significant reduction in seed cotton yield when subjected to water stress.To find out genotypes having better drought tolerance,seven genotypes of Gossypium hirsutum L.were tested under two moist... Cotton plant observes significant reduction in seed cotton yield when subjected to water stress.To find out genotypes having better drought tolerance,seven genotypes of Gossypium hirsutum L.were tested under two moisture levels,i.e.,normal and water deficit stress conditions at five locations of Punjab,Pakistan(Faisalabad,Sahiwal,Vehari,Rahim Yar Khan,and Bahawalpur)in 2013 and 2014.Genotype×environment interaction(GEI)was studied using the genotype main effects and genotype by environment interaction(GGE)biplot and additive main effect and multiplicative interaction analysis.The genotypes G3(7001/11)and G6(FH-942)were stable under normal condition,while under drought condition,the stable genotype was G5(FH-326)when analysed using additive main effects and multiplicative interaction(AMMI)biplot scheme.While GGE biplot analysis on the basis of best performance revealed that under normal condition the genotypes,G1(L-13/10)and G2(FH-2056/10),carrying the common position in biplot.Whereas,under water deficit stress condition,G5 was the best adaptive genotype at all five locations.In the same way,ranking of genotypes showed that the G5 was the ideal genotype under both conditions.So,it is concluded that the genotype G5(FH-326)was found best for water deficit stress condition and can be cultivated under water scarce areas of Punjab. 展开更多
关键词 UPLAND COTTON yield stability ADAPTABILITY water stress Pakistan IRRIGATION
下载PDF
RESEARCH ON THE WATER-RESISTANCE OF MAGNESIUM OXYCHLORIDE CEMENT——I:THE STABILITY OF THE REACTION PRODUCTS OF MAGNESIUM OXYCHLORIDE CEMENT IN WATER 被引量:9
18
作者 张传镁 邓德华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1994年第3期51-59,共9页
In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable... In this paper .the change of the crystalline phases in hardened magnesium oxychloride cement (MOC) paste in mater was analyzed by XRD. It was developed that the reaction products 5 phase or 3 phase of MOC are instable in water and can be changed into Mg(OH)2 by the action of water, which causes the content of 5 phase or 3 phase to be less and less,the content of Mg(OH)2 to be more and more and the strength to be the lower the lower,after hardended MOC paste was immersed in water. The change of 5 pliase and 3 phase into Mg(OH)2 is not a dissolve process, but a hydrolysis process. The hydrolysis products of 5 phase and 3 phase are Mg(OH)2 precipitation and soluble Cl-,AIg+ ions and H2O. The hydrolysis is sponta-neous thermodynamically and its chemical kinatic equation is C = C,,e-k Thus .it is suggested that only by enhancing the stability of 5 phase or 3 phase in water and preventing 5 phase or 3 phase from the hydrolyzing can the water resistance of MOC be improved well. 展开更多
关键词 magnesitt籭. oxychloride cement stability of the reaction products water resistance hydrolysis.
下载PDF
Long-term inorganic plus organic fertilization increases yield and yield stability of winter wheat 被引量:6
19
作者 Huan Chen Aixing Deng +6 位作者 Weijian Zhang Wei Li Yuqiang Qiao Taiming Yang Chengyan Zheng Chengfu Cao Fu Chen 《The Crop Journal》 SCIE CAS CSCD 2018年第6期589-599,共11页
An understanding of wheat yield and yield stability response to fertilization is important for sustainable wheat production. A 36-year long-term fertilization experiment was employed to evaluate the yield and yield st... An understanding of wheat yield and yield stability response to fertilization is important for sustainable wheat production. A 36-year long-term fertilization experiment was employed to evaluate the yield and yield stability of winter wheat. Five fertilization regimes were compared,including(1) CK, no fertilizer;(2) NPK, inorganic fertilizer only;(3) O, organic fertilizer only;(4)NPKO, 50% of NPK plus 50% of O, and(5) HNPKO, 80% of NPK plus 80% of O. The greatest yield increase was recorded in HNPKO, followed by NPKO, with O producing the lowest mean yield increase. Over the 36 years, the rate of wheat yield increase in fertilized plots ranged from95.31 kg ha-1 year-1 in the HNPKO to 138.65 kg ha-1 year-1 in the O. Yield stability analysis using the additive main effects and multiplicative interactions(AMMI) method assigned 62.3%, 26.3%,and 11.4% of sums of squares to fertilization effect, environmental effect, and fertilization ×environment interaction effect, respectively. The combination of inorganic and organic fertilization(NPKO and HNPKO) appeared to produce more stable yields than O or NPK, with lower coefficients of variation and AMMI stability value. However, wheat grown with O seemed to be the most susceptible to climate change and the least productive among the fertilized plots.Significant correlations of grain yield with soil properties and with mean air temperature were observed. These findings suggest that inorganic + organic fertilizer can increase wheat yield and its stability by improvement in soil fertility and reduction in variability to climate change. 展开更多
关键词 Winter wheat Grain YIELD YIELD stability AMMI analysis long-term FERTILIZATION
下载PDF
Long-term straw incorporation increases rice yield stability under high fertilization level conditions in the rice–wheat system 被引量:4
20
作者 Jianwei Zhang Weiwei Li +4 位作者 Yan Zhou Yanfeng Ding Lei Xu Yu Jiang Ganghua Li 《The Crop Journal》 SCIE CSCD 2021年第5期1191-1197,共7页
Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level con... Straw incorporation is a global common practice to improve soil fertility and rice yield.However,the effect of straw incorporation on rice yield stability is still unknown,especially under high fertilization level conditions.Here,we reported the effect of straw returning on rice yield and yield stability under high fertilization levels in the rice–wheat system over nine years.The results showed that straw incorporation did not significantly affect the average rice yield of nine years.Straw incorporation reduced the coefficient of variation of rice yield by 25.8%and increased the sustainable yield index by 8.2%.The rice yield positively correlated with mean photosynthetically active radiation (PAR) of rice growth season and the effects of straw incorporation on rice yield depended on the PAR.Straw incorporation increased the rice yield by 5.4%in the low PAR years,whereas it did not affect the rice yield in the high PAR years.Long-term straw incorporation lowered soil bulk density but improved the soil organic matter,total N,available N,available P,and available K more strongly than straw removal.Our findings suggest that straw incorporation can increase rice yield stability through improving the resistance of rice plant growth to low PAR. 展开更多
关键词 long-term straw incorporation Rice yield stability Rice-wheat system PAR
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部