Chamfered mould has gradually become a new technology equipment to eliminate transverse corner crack.However,longitudinal corner crack ratio of chamfered slab was very high.Solidification microstructure was detected i...Chamfered mould has gradually become a new technology equipment to eliminate transverse corner crack.However,longitudinal corner crack ratio of chamfered slab was very high.Solidification microstructure was detected in the area where the longitudinal corner crack occurred.Effect of narrow face shape and taper distribution of mould copper plate on longitudinal corner crack was studied by industrial tests.Water velocity distribution in the narrow copper plate was studied by numerical simulation.On the premise of preventing cooling water from nuclear boiling,improvement measures of mould cooling process and water seam structure were put forward through heat transfer calculation.The results showed that local taper of the meniscus region of mould should be increased to prevent generation of longitudinal corner crack.Chamfering slope length of narrow copper plate should be controlled within 55 mm,and chamfering angle should be controlled at about 30°.Average water velocity should be more than 7.0 m/s.The flat and chamfering regions of narrow copper plate working face should be designed as double taper and funnel structure,respectively.The water seam in the chamfering region should preferentially choose the combined cooling structure with two holes and one slot.In order to prevent the extension of longitudinal corner crack,chamfered narrow face foot roller should be used.展开更多
This paper discusses cracking in airport pavements as studied in Construction Cycle 6 of testing carried out at the National Airport Pavement Testing Facility by the Federal Aviation Administration. Pavements of three...This paper discusses cracking in airport pavements as studied in Construction Cycle 6 of testing carried out at the National Airport Pavement Testing Facility by the Federal Aviation Administration. Pavements of three different flexural strengths as well as two different subgrades, a soft bituminous layer and a more rigid layer known as econocrete, were tested. In addition to this, cracking near two types of isolated transition joints, a reinforced edge joint and a thickened edge joint, was considered. The pavement sections were tested using a moving load simulating that of an aircraft. It has been determined that the degree of cracking was reduced as the flexural strength of the pavement was increased and that fewer cracks formed over the econocrete base than over the bituminous base. In addition, the thickened edge transition joint was more effective in preventing cracking at the edges compared to the reinforced edge joint.展开更多
文摘Chamfered mould has gradually become a new technology equipment to eliminate transverse corner crack.However,longitudinal corner crack ratio of chamfered slab was very high.Solidification microstructure was detected in the area where the longitudinal corner crack occurred.Effect of narrow face shape and taper distribution of mould copper plate on longitudinal corner crack was studied by industrial tests.Water velocity distribution in the narrow copper plate was studied by numerical simulation.On the premise of preventing cooling water from nuclear boiling,improvement measures of mould cooling process and water seam structure were put forward through heat transfer calculation.The results showed that local taper of the meniscus region of mould should be increased to prevent generation of longitudinal corner crack.Chamfering slope length of narrow copper plate should be controlled within 55 mm,and chamfering angle should be controlled at about 30°.Average water velocity should be more than 7.0 m/s.The flat and chamfering regions of narrow copper plate working face should be designed as double taper and funnel structure,respectively.The water seam in the chamfering region should preferentially choose the combined cooling structure with two holes and one slot.In order to prevent the extension of longitudinal corner crack,chamfered narrow face foot roller should be used.
基金the Federal Aviation Administration (FAA) as this work is funded under FAA research grant #10-G-012project has been sponsored by the FAA
文摘This paper discusses cracking in airport pavements as studied in Construction Cycle 6 of testing carried out at the National Airport Pavement Testing Facility by the Federal Aviation Administration. Pavements of three different flexural strengths as well as two different subgrades, a soft bituminous layer and a more rigid layer known as econocrete, were tested. In addition to this, cracking near two types of isolated transition joints, a reinforced edge joint and a thickened edge joint, was considered. The pavement sections were tested using a moving load simulating that of an aircraft. It has been determined that the degree of cracking was reduced as the flexural strength of the pavement was increased and that fewer cracks formed over the econocrete base than over the bituminous base. In addition, the thickened edge transition joint was more effective in preventing cracking at the edges compared to the reinforced edge joint.