期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Conformally flat Lorentzian hypersurfaces in R_1~4 with three distinct principal curvatures 被引量:2
1
作者 Xiaozhen Wang Changping Wang Zhenxiao Xie 《Science China Mathematics》 SCIE CSCD 2018年第5期897-916,共20页
A three dimensional Lorentzian hypersurface x : M_1~3→ R_1~4 is called conformally flat if its induced metric is conformal to the flat Lorentzian metric, and this property is preserved under the conformal transformat... A three dimensional Lorentzian hypersurface x : M_1~3→ R_1~4 is called conformally flat if its induced metric is conformal to the flat Lorentzian metric, and this property is preserved under the conformal transformation of R_1~4. Using the projective light-cone model, for those whose shape operators have three distinct real eigenvalues, we calculate the integrability conditions by constructing a scalar conformal invariant and a canonical moving frame in this paper. Similar to the Riemannian case, these hypersurfaces can be determined by the solutions to some system of partial differential equations. 展开更多
关键词 conformally flat lorentzian hypersurfaces conformal geometry of lorentzian space forms integrability equations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部