A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) w...A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) were designed for the throttling experiment to compare the throttling effect using the equivalent diameter ratio (RED) and diameter ratio (RD ) as key parameters, respectively. Meanwhile, effective metrical conditions were provided for experimental accuracy. The throttling model form was determined according to the theoretical throttling model of SO. Then the unknown parameters involved were identified by experimental data. A good concordance between the modeling computation and experimental results shows a validation of the MO throtting model.展开更多
The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have fo...The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.展开更多
Magnetic-valve controllable reactor(MCR)has characteristics of DC bias and different types of magnetic flux density in the magnetic circuit and winding current distortion.These characteristics not only lead to loss ca...Magnetic-valve controllable reactor(MCR)has characteristics of DC bias and different types of magnetic flux density in the magnetic circuit and winding current distortion.These characteristics not only lead to loss calculation method of MCR different from that of power transformer,but also make it more difficult to calculate the core loss and wingding loss of MCR accurately.Our study combines core partition method with dynamic inverse J-A model to calculate the core loss of MCR.The winding loss coefficient of MCR is proposed,which takes into account the influence of harmonics and magnetic flux leakage on the winding loss of MCR.The result shows that the proposed core loss calculation method and winding loss coefficient are effective and correct for the loss calculation of MCR.展开更多
In this paper,we studied theoretically and numerically heated losses of a flat solar collector to model the solar water heating system for the Kazakhstan climate condition.For different climatic zones with a growing c...In this paper,we studied theoretically and numerically heated losses of a flat solar collector to model the solar water heating system for the Kazakhstan climate condition.For different climatic zones with a growing cost for energy or lack of central heating systems,promising is to find ways to improve the energy efficiency of the solar system.The mathematical model(based on ordinary differential equation)simulated the solar system work process under different conditions.To bridge the modeling and real values results,we studied the important physical parameters such as loss coefficient,Nu,Ra,and Pr values.They impacted the efficiency of flat solar collectors and heat losses of the system.The developed mathematical models,the design and composition of the software and hardware complex,and automated control and monitoring systems allow solar hot water heating systems to increase the energy efficiency of life support systems and heat supply of buildings by reducing energy consumption for heat supply.The simulation result showed that during the daytime,the temperature of water in the collector is 70°C;the storage of heated water since heated water is cooled at night.We defined that a work period of the system can be extended with high efficiency(April-October)for Almaty region.展开更多
Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatil...Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatili method. The influence on scattering loss coefficient by waveguide surface roughness is then analyzed. Finally, the mode coupling efficiency for the SMFOpticalWaveguide (SOW) structure and MMFOptical Waveguide (MOW) structure are presented. The total scatter ing loss coefficient depends on modes scattering loss coeffi cients and the mode coupling efficiency between fiber and waveguide. The simulation results show that the total scatter ing loss coefficient for the MOW structure is affected more strongly by surface roughness than that for the SOW struc ture. The total scattering loss coefficient of waveguide decreas es from 3.97 x 10^-2 dB/cm to 2.96 x 10^-4 dB/cm for the SOW structure and from 5.24 - 10^-2 dB/cm to 4.7 x 10^-4 dB/ cm for the MOW structure when surface roughness is from 300nm to 20nm and waveguide length is 100cm.展开更多
Pressure losses in flow components are generally characterized either by pressure loss coefficients or by discharge coefficients. The pressure drop for incompressible flow across a screen of fractional free area a is ...Pressure losses in flow components are generally characterized either by pressure loss coefficients or by discharge coefficients. The pressure drop for incompressible flow across a screen of fractional free area a is often calculated from widely used correlation provided in Perry's Handbook. This correlation was developed based on experimental work which have covered a wide range of fractional free area (a = 0.14 to 0.79). The present work aims at validation for a flow in plain square mesh screen with a particular fractional free area (porosity, a) of 0.25 using CFD (Computational Fluid Dynamics) approach. The simulations are carried out for wide range of screen Reynolds number (Re = 0.1 to 105) covering both laminar and turbulent flow regimes. Initial simulations are carried out for incompressible fluid (water) and further extended to compressible fluid (air). Discharge coefficients obtained from the simulations are compared with experimental values. Effect of compressibility on discharge coefficients is described.展开更多
This paper presents an analysis of the operation of a stage of an aircraft engine gas turbine in terms of generation of flow losses. The energy loss coefficient, the entropy loss coefficient and an additional pressure...This paper presents an analysis of the operation of a stage of an aircraft engine gas turbine in terms of generation of flow losses. The energy loss coefficient, the entropy loss coefficient and an additional pressure loss coefficient were adopted to describe the losses quantitatively. Distributions of loss coefficients were presented along the height of the blade channel. All coefficients were determined based on the data from the unsteady flow field and analyzed for different mutual positioning of the stator and rotor blades. The flow calculations were performed using the Ansys CFX commercial software package. The analyses presented in this paper were carried out using the URANS (Unsteady Reynolds-Averaged Navier-Stokes) method and two different turbulence models: the common Shear Stress Transport (SST) model and the Adaptive-Scale Simulation (SAS) turbulence model, which belongs to the group of hybrid models.展开更多
At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of ...At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of pipeline leakage is of great significance for saving water resources and reducing economic losses.Acoustic emission technology is the most widely used pipeline leak location technology.The traditional non-stationary random signal de-noising method mainly relies on the estimation of noise parameters,ignoring periodic noise and components unrelated to pipeline leakage.Aiming at the above problems,this paper proposes a leak location method for water supply pipelines based on a multivariate variational mode decomposition algorithm.This method combines the two parameters of the energy loss coefficient and the correlation coefficient between adjacent modes,and adaptively determines the decomposition mode number K according to the characteristics of the signal itself.According to the correlation coefficient,the effective component is selected to reconstruct the signal and the cross-correlation time delay is estimated to determine the location of the pipeline leakage point.The experimental results show that this method has higher accuracy than the cross-correlation method based on VMD and the cross-correlation method based on EMD,and the average relative positioning error is less than 2.2%.展开更多
This article describes the effects of some factors on the tip clearance flow in axial linear turbine cascades. The measurements of the total pressure loss coefficient are made at the cascade outlets by using a five-ho...This article describes the effects of some factors on the tip clearance flow in axial linear turbine cascades. The measurements of the total pressure loss coefficient are made at the cascade outlets by using a five-hole probe at exit Mach numbers of 0.10, 0.14 and 0.19. At each exit Mach number, experiments are performed at the tip clearance heights of 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of the blade height. The effects of the non-uniform tip clearance height of each blade in the pitchwise direction are also studied. The results show that at a given tip clearance height, generally, total pressure loss rises with exit Mach numbers proportionally. At a fixed exit Mach number, the total pressure loss augments nearly proportionally as the tip clearance height increases. The increased tip clearance heights in the tip regions of two adjacent blades are to be blame for the larger clearance loss of the center blade. Compared to the effects of the tip clearance height, the effects of the exit Mach number and the pitchwise variation of the tip clearance height on the cascade total pressure loss are so less significant to be omitted.展开更多
The endoreversible Carnot cycle is analyzed based on the concepts of entropy generation, entropy generation number, entransy loss, and entransy loss coefficient. The relationships of the cycle output power and heat-wo...The endoreversible Carnot cycle is analyzed based on the concepts of entropy generation, entropy generation number, entransy loss, and entransy loss coefficient. The relationships of the cycle output power and heat-work conversion efficiency with these parameters are discussed. For the numerical examples discussed, the preconditions of the application for these concepts are derived. When the inlet temperatures and heat capacity flow rates of hot streams and environment temperature are prescribed, the results show that the concepts of entropy generation and entransy loss are applicable. However, in the presence of various inlet temperatures of streams, larger entransy loss rate still leads to larger output power, while smaller entropy generation rate does not. When the heat capacity flow rates of hot streams are various, neither larger entransy loss rate nor smaller entropy generation rate always leads to larger output power. Larger entransy loss coefficient always leads to larger heat-work conversion efficiency for the cases discussed, while smaller entropy generation number does not always.展开更多
A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas vel...A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.展开更多
For the general fixed effects linear model: Y = X_T+ε, ε~N(0, V), V≥0, weobtain the necessary and sufficient conditions for LY +a to be admissible for a linear estimablefunction S_r in the class of all estimators ...For the general fixed effects linear model: Y = X_T+ε, ε~N(0, V), V≥0, weobtain the necessary and sufficient conditions for LY +a to be admissible for a linear estimablefunction S_r in the class of all estimators under the loss function (d -- Sr)'D(d --Sr), whereD≥0 is known. For the general random effects linear model: Y = Xβ+ε,(βε)~N((Aα 0), (V_(11)V_(12)V_(21)V_(22))), ∧= XV_(11)X'+XV_(12)+ V_(21)X+V_(22)≥0, we also get the necessaryand sufficient conditions for LY+a to be admissible for a linear estimable function Sα+Qβin the class of all estimators under the loss function (d-Sα-Qβ)'D(d-Sα-Qβ).whereD≥0 is known.展开更多
In this study,calibrations of non-point source(NPS)pollution models are performed based on Black River basin historical real-time runoff data,sedimentation record data,and NPS sources survey information.The concept of...In this study,calibrations of non-point source(NPS)pollution models are performed based on Black River basin historical real-time runoff data,sedimentation record data,and NPS sources survey information.The concept of NPS loss coefficient for the watershed or the loss coefficients(LC)for simplicity is brought up by examining NPS build-up and migration processes along riverbanks in natural river systems.The historical data is used for determining the nitrogenous NPS loss coefficient for five land use types including farmland,urban land,grassland,shrub land,and forest under different precipitation conditions.The comparison of outputs from Soil and Water Assessment Tool(SWAT)model and coefficient export method showed that both methods could obtain reasonable LC.The high Pearson correlation coefficient(0.94722)between those two sets of calculation results justified the consistency of those two models.Another result in the study is that different combinations of precipitation condition and land use types could significantly affect the calculated loss coefficient.As for the adsorptive nitrogen,the order of impact on LC for different land use types can be sorted as:farm land.urban land.grassland.shrub land.forest while the order was farmland.grass land.shrub land.forest.urban land for soluble nitrogen.展开更多
We investigate the two-color laser modulation of the magnetically induced Feshbach resonance. The two-color laser is nearly resonant with an optical bound-to-bound transition at the resonance position. The analytical ...We investigate the two-color laser modulation of the magnetically induced Feshbach resonance. The two-color laser is nearly resonant with an optical bound-to-bound transition at the resonance position. The analytical formula of scattering length is obtained by solving the Heisenberg equation. The scattering length can be modified by changing the Rabi frequencies or optical field frequency. By choosing the suitable optical parameters, the two-body loss coefficient K2 can be greatly reduced compared to the usual single optical scheme.展开更多
A theoretical calculation method of off-design performance is developed for an axial flow fan of oil cooling system in helicopter,including calculation of aerodynamic parameters and performance parameters.When calcula...A theoretical calculation method of off-design performance is developed for an axial flow fan of oil cooling system in helicopter,including calculation of aerodynamic parameters and performance parameters.When calculating inlet shock loss,the shock loss coefficient is obtained by comparing results of theoretical calculation,experimental and numerical calculation.The theoretical results and numerical results show that all air velocity components increase from hub to shroud in main flow area at rated condition.Tip leakage vortex moves downstream as flow rate increases.When flow rate decreases,Re decreases,and boundary layer thickness from hub to shroud area all increases gradually.Tip leakage vortex moves upstream,and secondary loss increases.Low speed area in the passage is widened along with high speed area moving to hub area,influenced by boundary layer separation.Consequently wake area and jet area at fan outlet are both larger than rated condition.Therefore optimization design for off-design performance of the fan is required on aerodynamic parameters influencing fan loss.A reliable method is supplied for estimating altitude performance of lubricating system in helicopter.展开更多
This paper deals with the influence of phase modulated synthetic jet on the aerodynamics of the hump in a closed test section Of the Eiffel-type wind tunnel. Three experimental methods of measurement techniques of thi...This paper deals with the influence of phase modulated synthetic jet on the aerodynamics of the hump in a closed test section Of the Eiffel-type wind tunnel. Three experimental methods of measurement techniques of this phenomenon were used: the pressure profile using the Kiel total pressure probe, the velocity profile using the CTA (constant temperature anemometry) probe and the visualization of the flow field using the hot film and the thermo camera, The experimental results with and without the influence of the synthetic jet were compared, as well the impact of the phase shift of the neighbouring synthetic jets. As a reference case, the flow around the hump without the influence of the synthetic jet was selected. The results of the measurement are presented in figures and compared.展开更多
With the increasing researches on geotechnical properties of the diesel contaminated soil( DCS),the water content measured is indispensable part during the early period. In this study,the relative error of water conte...With the increasing researches on geotechnical properties of the diesel contaminated soil( DCS),the water content measured is indispensable part during the early period. In this study,the relative error of water content measurement using the traditional method is as high as 20. 78%,which is no longer suitable for contaminated soil. Through a series of tests to measure the loss coefficient of diesel in the drying time,the authors finally proposed a modified calculation formula for test samples. The results show that the maximum relative error calculated by using the modified formula is 0. 96%,far lower than that of traditional formula,which can provide accurate data for further study of diesel contaminated soil.展开更多
In winter,rivers in cold regions often experience flood disasters resulted from ice jams or ice dams.Investigations of the variation of ice jam thickness and water level during an ice jammed period are not only a prac...In winter,rivers in cold regions often experience flood disasters resulted from ice jams or ice dams.Investigations of the variation of ice jam thickness and water level during an ice jammed period are not only a practical need for ice prevention to avoid disaster and plan water resource,but also essential for the development of any mathematical model for predicting the evolution of ice jam.So far,some equations based on the energy equation have been proposed to describe the relationship between ice jam thickness and water level.However,in the derivation of these equations,the local head loss coefficient at the ice jam head and the riverbed slope factor were neglected.Obviously,those reported equations cannot be used to preciously describe the flow energy equation with ice jams and accurately calculate the ice jam thickness and water level.In the present study,a more comprehensive theoretical model for hydraulic calculation of ice jam thickness has been derived by considering important and essential factors including riverbed slope and local head loss coefficient at the ice jam head.Furthermore,based on the data collected from laboratory experiments of ice jam accumulation,the local head loss coefficient at the ice jam head has been calculated,and the empirical equation for calculating the local head loss coefficient has been established by considering flow Froude number and the ratio of ice discharge to flow discharge.The results of this study not only provide a new reference for calculating ice jam thickness and water level,but also present a theoretical basis for accurate CFD simulation of ice jams.展开更多
The impacts of the cavity leakage flow on the shrouded stator aerodynamic performance were investigated by modelling the annular cascade mainstream with the seal cavity flow path based on the validated numerical metho...The impacts of the cavity leakage flow on the shrouded stator aerodynamic performance were investigated by modelling the annular cascade mainstream with the seal cavity flow path based on the validated numerical method.Meanwhile,the interactions between the cavity leakage and the mainstream were also determined in the current study.The development of hub corner separation under the action of leakage was discussed and the total pressure loss coefficient as well as the entropy-based loss coefficient was employed to evaluate the performance changes at different seal clearances and cavity rotational speeds.The results show that the cavity leakage flow induces a new vortex near the blade leading edge and plays an important role in the development of passage vortex and the size of concentrated shedding vortex.By increasing the seal clearance with more cavity leakage flow rate,an increase in the pitchwise extent of the separation region under 15%span is significant and the total pressure loss in the separation core increases.In addition,with the increase of cavity rotating speed,the starting point of corner separation moves backward,reducing the size and depth of the hub corner separation.The mainstream loss reduction in combination with the entropy increase in the seal cavity causes the entropy-based loss coefficient to perform a trend of decreasing first and then increasing with the cavity speed.展开更多
Results obtained from an experbontal study of the threedimensional flow survey within and exit of a large defiection linear turbine cascade are presented for a tip clearance levels of 0.08, 1.5, 3.0 percent of chord a...Results obtained from an experbontal study of the threedimensional flow survey within and exit of a large defiection linear turbine cascade are presented for a tip clearance levels of 0.08, 1.5, 3.0 percent of chord and compared with the help of boundary layer probes and that within and exit of a blade passage was done with a miniaturised five hole probe. End wall and blade tip surface static pressures were also obtained, in addition to flow visualisation studies. A strong horse-shoe vortex forms in front of the leading edge for zero clearance whereas this vortex does not appear for 3 percent clearance indicating that for large clearance the pressure forces have dominating infiuence than the viscous forces. In addition to normally known clearance vortex, a small tip separation vortex was noticed on the blade tip surface inside the tip gap. Due to the area contraction caused by the tip separation vortex, the fluid movign towards the tip gap from the pressure side is accelerated. Downstream of the vortex, the endwall pressure increases due to flow mixing. Both vortices increase in size and strength along the chord. The miring is incomplete in the aft portion of the blade. The tip gap velocity profiles exhibit wak like characteristics especially at axial positions where the mixing is incomplete. The passage vortex in the present investigations did not diminish with increase in clearance. The discharge coefhcient and the total pressure loss coefficient within the tip gap show similar tendency with lower values near the leading and trailing edge regions.展开更多
基金the National Natural Science Foundation of China(Grant No.50578049)
文摘A throttling experiment for the multi-hole orifice (MO) using water was conducted based on the conclusion of key parameters affecting the MO throttling performance. Testing MOs and standard orifice plates ( SO ) were designed for the throttling experiment to compare the throttling effect using the equivalent diameter ratio (RED) and diameter ratio (RD ) as key parameters, respectively. Meanwhile, effective metrical conditions were provided for experimental accuracy. The throttling model form was determined according to the theoretical throttling model of SO. Then the unknown parameters involved were identified by experimental data. A good concordance between the modeling computation and experimental results shows a validation of the MO throtting model.
文摘The T-junction model of engine exhaust manifolds significantly influences the simulation precision of the pressure wave and mass flow rate in the intake and exhaust manifolds of diesel engines. Current studies have focused on constant pressure models, constant static pressure models and pressure loss models. However, low model precision is a common disadvantage when simulating engine exhaust manifolds, particularly for turbocharged systems. To study the performance of junction flow, a cold wind tunnel experiment with high velocities at the junction of a diesel exhaust manifold is performed, and the variation in the pressure loss in the T-junction under different flow conditions is obtained. Despite the trend of the calculated total pressure loss coefficient, which is obtained by using the original pressure loss model and is the same as that obtained from the experimental results, large differences exist between the calculated and experimental values. Furthermore, the deviation becomes larger as the flow velocity increases. By improving the Vazsonyi formula considering the flow velocity and introducing the distribution function, a modified pressure loss model is established, which is suitable for a higher velocity range. Then, the new model is adopted to solve one-dimensional, unsteady flow in a D6114 turbocharged diesel engine. The calculated values are compared with the measured data, and the result shows that the simulation accuracy of the pressure wave before the turbine is improved by 4.3% with the modified pressure loss model because gas compressibility is considered when the flow velocities are high. The research results provide valuable information for further junction flow research, particularly the correction of the boundary condition in one-dimensional simulation models.
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University(No.201701)。
文摘Magnetic-valve controllable reactor(MCR)has characteristics of DC bias and different types of magnetic flux density in the magnetic circuit and winding current distortion.These characteristics not only lead to loss calculation method of MCR different from that of power transformer,but also make it more difficult to calculate the core loss and wingding loss of MCR accurately.Our study combines core partition method with dynamic inverse J-A model to calculate the core loss of MCR.The winding loss coefficient of MCR is proposed,which takes into account the influence of harmonics and magnetic flux leakage on the winding loss of MCR.The result shows that the proposed core loss calculation method and winding loss coefficient are effective and correct for the loss calculation of MCR.
基金Thisworkwas supported by the Ministry of Education and Science of theRepublic of Kazakhstan BR10965172。
文摘In this paper,we studied theoretically and numerically heated losses of a flat solar collector to model the solar water heating system for the Kazakhstan climate condition.For different climatic zones with a growing cost for energy or lack of central heating systems,promising is to find ways to improve the energy efficiency of the solar system.The mathematical model(based on ordinary differential equation)simulated the solar system work process under different conditions.To bridge the modeling and real values results,we studied the important physical parameters such as loss coefficient,Nu,Ra,and Pr values.They impacted the efficiency of flat solar collectors and heat losses of the system.The developed mathematical models,the design and composition of the software and hardware complex,and automated control and monitoring systems allow solar hot water heating systems to increase the energy efficiency of life support systems and heat supply of buildings by reducing energy consumption for heat supply.The simulation result showed that during the daytime,the temperature of water in the collector is 70°C;the storage of heated water since heated water is cooled at night.We defined that a work period of the system can be extended with high efficiency(April-October)for Almaty region.
基金supported by the Project of Shanghai Committee of Science and Technology under Grant No.10511500500ZTE Industry-Academia-Research Cooperation Funds
文摘Optical scattering loss coefficient of muhimode rectangular waveguide is analyzed in this work. First, the effective refrac tive index and the mode field distribution of waveguide modes are obtained using the Marcatili method. The influence on scattering loss coefficient by waveguide surface roughness is then analyzed. Finally, the mode coupling efficiency for the SMFOpticalWaveguide (SOW) structure and MMFOptical Waveguide (MOW) structure are presented. The total scatter ing loss coefficient depends on modes scattering loss coeffi cients and the mode coupling efficiency between fiber and waveguide. The simulation results show that the total scatter ing loss coefficient for the MOW structure is affected more strongly by surface roughness than that for the SOW struc ture. The total scattering loss coefficient of waveguide decreas es from 3.97 x 10^-2 dB/cm to 2.96 x 10^-4 dB/cm for the SOW structure and from 5.24 - 10^-2 dB/cm to 4.7 x 10^-4 dB/ cm for the MOW structure when surface roughness is from 300nm to 20nm and waveguide length is 100cm.
文摘Pressure losses in flow components are generally characterized either by pressure loss coefficients or by discharge coefficients. The pressure drop for incompressible flow across a screen of fractional free area a is often calculated from widely used correlation provided in Perry's Handbook. This correlation was developed based on experimental work which have covered a wide range of fractional free area (a = 0.14 to 0.79). The present work aims at validation for a flow in plain square mesh screen with a particular fractional free area (porosity, a) of 0.25 using CFD (Computational Fluid Dynamics) approach. The simulations are carried out for wide range of screen Reynolds number (Re = 0.1 to 105) covering both laminar and turbulent flow regimes. Initial simulations are carried out for incompressible fluid (water) and further extended to compressible fluid (air). Discharge coefficients obtained from the simulations are compared with experimental values. Effect of compressibility on discharge coefficients is described.
基金the Polish Ministry of Science and Higher Education for the financial support for the research project UMO-2011/01/B/ST8/03488.
文摘This paper presents an analysis of the operation of a stage of an aircraft engine gas turbine in terms of generation of flow losses. The energy loss coefficient, the entropy loss coefficient and an additional pressure loss coefficient were adopted to describe the losses quantitatively. Distributions of loss coefficients were presented along the height of the blade channel. All coefficients were determined based on the data from the unsteady flow field and analyzed for different mutual positioning of the stator and rotor blades. The flow calculations were performed using the Ansys CFX commercial software package. The analyses presented in this paper were carried out using the URANS (Unsteady Reynolds-Averaged Navier-Stokes) method and two different turbulence models: the common Shear Stress Transport (SST) model and the Adaptive-Scale Simulation (SAS) turbulence model, which belongs to the group of hybrid models.
基金supported by the three funds:Industry-University-research Project of Anhui Jianzhu University HYB20210116National Key Research and Development Project of China No.2017YFC0704100(entitled New Generation Intelligent Building Platform Techniques)Research Project of Anhui Jianzhu University jy2021-c-017(Project Name:Research and Application ofWater Distribution Network Leakage Detection System Based on DMA Partition).
文摘At present,the leakage rate of the water distribution network in China is still high,and the waste of water resources caused by water distribution network leakage is quite serious every year.Therefore,the location of pipeline leakage is of great significance for saving water resources and reducing economic losses.Acoustic emission technology is the most widely used pipeline leak location technology.The traditional non-stationary random signal de-noising method mainly relies on the estimation of noise parameters,ignoring periodic noise and components unrelated to pipeline leakage.Aiming at the above problems,this paper proposes a leak location method for water supply pipelines based on a multivariate variational mode decomposition algorithm.This method combines the two parameters of the energy loss coefficient and the correlation coefficient between adjacent modes,and adaptively determines the decomposition mode number K according to the characteristics of the signal itself.According to the correlation coefficient,the effective component is selected to reconstruct the signal and the cross-correlation time delay is estimated to determine the location of the pipeline leakage point.The experimental results show that this method has higher accuracy than the cross-correlation method based on VMD and the cross-correlation method based on EMD,and the average relative positioning error is less than 2.2%.
基金National Natural Science Foundation of China (10377011)
文摘This article describes the effects of some factors on the tip clearance flow in axial linear turbine cascades. The measurements of the total pressure loss coefficient are made at the cascade outlets by using a five-hole probe at exit Mach numbers of 0.10, 0.14 and 0.19. At each exit Mach number, experiments are performed at the tip clearance heights of 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of the blade height. The effects of the non-uniform tip clearance height of each blade in the pitchwise direction are also studied. The results show that at a given tip clearance height, generally, total pressure loss rises with exit Mach numbers proportionally. At a fixed exit Mach number, the total pressure loss augments nearly proportionally as the tip clearance height increases. The increased tip clearance heights in the tip regions of two adjacent blades are to be blame for the larger clearance loss of the center blade. Compared to the effects of the tip clearance height, the effects of the exit Mach number and the pitchwise variation of the tip clearance height on the cascade total pressure loss are so less significant to be omitted.
基金Project supported by the National Natural Science Foundation of China(Grant No.51376101)the Initiative Scientific Research Program of Tsinghua University,China
文摘The endoreversible Carnot cycle is analyzed based on the concepts of entropy generation, entropy generation number, entransy loss, and entransy loss coefficient. The relationships of the cycle output power and heat-work conversion efficiency with these parameters are discussed. For the numerical examples discussed, the preconditions of the application for these concepts are derived. When the inlet temperatures and heat capacity flow rates of hot streams and environment temperature are prescribed, the results show that the concepts of entropy generation and entransy loss are applicable. However, in the presence of various inlet temperatures of streams, larger entransy loss rate still leads to larger output power, while smaller entropy generation rate does not. When the heat capacity flow rates of hot streams are various, neither larger entransy loss rate nor smaller entropy generation rate always leads to larger output power. Larger entransy loss coefficient always leads to larger heat-work conversion efficiency for the cases discussed, while smaller entropy generation number does not always.
基金Supported by Liaoning Provincial Natural Science Foundation(No.972050).
文摘A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.
文摘For the general fixed effects linear model: Y = X_T+ε, ε~N(0, V), V≥0, weobtain the necessary and sufficient conditions for LY +a to be admissible for a linear estimablefunction S_r in the class of all estimators under the loss function (d -- Sr)'D(d --Sr), whereD≥0 is known. For the general random effects linear model: Y = Xβ+ε,(βε)~N((Aα 0), (V_(11)V_(12)V_(21)V_(22))), ∧= XV_(11)X'+XV_(12)+ V_(21)X+V_(22)≥0, we also get the necessaryand sufficient conditions for LY+a to be admissible for a linear estimable function Sα+Qβin the class of all estimators under the loss function (d-Sα-Qβ)'D(d-Sα-Qβ).whereD≥0 is known.
基金This work was supported by the National Natural Science Foundation of China(Grant No.40771191).
文摘In this study,calibrations of non-point source(NPS)pollution models are performed based on Black River basin historical real-time runoff data,sedimentation record data,and NPS sources survey information.The concept of NPS loss coefficient for the watershed or the loss coefficients(LC)for simplicity is brought up by examining NPS build-up and migration processes along riverbanks in natural river systems.The historical data is used for determining the nitrogenous NPS loss coefficient for five land use types including farmland,urban land,grassland,shrub land,and forest under different precipitation conditions.The comparison of outputs from Soil and Water Assessment Tool(SWAT)model and coefficient export method showed that both methods could obtain reasonable LC.The high Pearson correlation coefficient(0.94722)between those two sets of calculation results justified the consistency of those two models.Another result in the study is that different combinations of precipitation condition and land use types could significantly affect the calculated loss coefficient.As for the adsorptive nitrogen,the order of impact on LC for different land use types can be sorted as:farm land.urban land.grassland.shrub land.forest while the order was farmland.grass land.shrub land.forest.urban land for soluble nitrogen.
基金supported by the National Natural Science Foundation of China(Grant Nos.10974024 and 11274056)
文摘We investigate the two-color laser modulation of the magnetically induced Feshbach resonance. The two-color laser is nearly resonant with an optical bound-to-bound transition at the resonance position. The analytical formula of scattering length is obtained by solving the Heisenberg equation. The scattering length can be modified by changing the Rabi frequencies or optical field frequency. By choosing the suitable optical parameters, the two-body loss coefficient K2 can be greatly reduced compared to the usual single optical scheme.
基金National Aviation Science Foundation of China (No. 20080451014)
文摘A theoretical calculation method of off-design performance is developed for an axial flow fan of oil cooling system in helicopter,including calculation of aerodynamic parameters and performance parameters.When calculating inlet shock loss,the shock loss coefficient is obtained by comparing results of theoretical calculation,experimental and numerical calculation.The theoretical results and numerical results show that all air velocity components increase from hub to shroud in main flow area at rated condition.Tip leakage vortex moves downstream as flow rate increases.When flow rate decreases,Re decreases,and boundary layer thickness from hub to shroud area all increases gradually.Tip leakage vortex moves upstream,and secondary loss increases.Low speed area in the passage is widened along with high speed area moving to hub area,influenced by boundary layer separation.Consequently wake area and jet area at fan outlet are both larger than rated condition.Therefore optimization design for off-design performance of the fan is required on aerodynamic parameters influencing fan loss.A reliable method is supplied for estimating altitude performance of lubricating system in helicopter.
文摘This paper deals with the influence of phase modulated synthetic jet on the aerodynamics of the hump in a closed test section Of the Eiffel-type wind tunnel. Three experimental methods of measurement techniques of this phenomenon were used: the pressure profile using the Kiel total pressure probe, the velocity profile using the CTA (constant temperature anemometry) probe and the visualization of the flow field using the hot film and the thermo camera, The experimental results with and without the influence of the synthetic jet were compared, as well the impact of the phase shift of the neighbouring synthetic jets. As a reference case, the flow around the hump without the influence of the synthetic jet was selected. The results of the measurement are presented in figures and compared.
文摘With the increasing researches on geotechnical properties of the diesel contaminated soil( DCS),the water content measured is indispensable part during the early period. In this study,the relative error of water content measurement using the traditional method is as high as 20. 78%,which is no longer suitable for contaminated soil. Through a series of tests to measure the loss coefficient of diesel in the drying time,the authors finally proposed a modified calculation formula for test samples. The results show that the maximum relative error calculated by using the modified formula is 0. 96%,far lower than that of traditional formula,which can provide accurate data for further study of diesel contaminated soil.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3202502)the National Natural Science Foundation Joint Fund of China(Grant No.U2243239).
文摘In winter,rivers in cold regions often experience flood disasters resulted from ice jams or ice dams.Investigations of the variation of ice jam thickness and water level during an ice jammed period are not only a practical need for ice prevention to avoid disaster and plan water resource,but also essential for the development of any mathematical model for predicting the evolution of ice jam.So far,some equations based on the energy equation have been proposed to describe the relationship between ice jam thickness and water level.However,in the derivation of these equations,the local head loss coefficient at the ice jam head and the riverbed slope factor were neglected.Obviously,those reported equations cannot be used to preciously describe the flow energy equation with ice jams and accurately calculate the ice jam thickness and water level.In the present study,a more comprehensive theoretical model for hydraulic calculation of ice jam thickness has been derived by considering important and essential factors including riverbed slope and local head loss coefficient at the ice jam head.Furthermore,based on the data collected from laboratory experiments of ice jam accumulation,the local head loss coefficient at the ice jam head has been calculated,and the empirical equation for calculating the local head loss coefficient has been established by considering flow Froude number and the ratio of ice discharge to flow discharge.The results of this study not only provide a new reference for calculating ice jam thickness and water level,but also present a theoretical basis for accurate CFD simulation of ice jams.
基金supported by the National Natural Science Foundation of China(No.52006021,No.52106040)China Postdoctoral Science Foundation(No.2021M690498,No.2021M700648)+3 种基金Natural Science Foundation of Liaoning Province(No.2020-BS-069)Dalian Science and Technology Innovation Fund(No.2021JJ12GX030)the Fundamental Research Funds for the Central Universities(No.3132022210)National Research Center for International Subsea and Engineering Technology and Equipment(No.3132022349)。
文摘The impacts of the cavity leakage flow on the shrouded stator aerodynamic performance were investigated by modelling the annular cascade mainstream with the seal cavity flow path based on the validated numerical method.Meanwhile,the interactions between the cavity leakage and the mainstream were also determined in the current study.The development of hub corner separation under the action of leakage was discussed and the total pressure loss coefficient as well as the entropy-based loss coefficient was employed to evaluate the performance changes at different seal clearances and cavity rotational speeds.The results show that the cavity leakage flow induces a new vortex near the blade leading edge and plays an important role in the development of passage vortex and the size of concentrated shedding vortex.By increasing the seal clearance with more cavity leakage flow rate,an increase in the pitchwise extent of the separation region under 15%span is significant and the total pressure loss in the separation core increases.In addition,with the increase of cavity rotating speed,the starting point of corner separation moves backward,reducing the size and depth of the hub corner separation.The mainstream loss reduction in combination with the entropy increase in the seal cavity causes the entropy-based loss coefficient to perform a trend of decreasing first and then increasing with the cavity speed.
文摘Results obtained from an experbontal study of the threedimensional flow survey within and exit of a large defiection linear turbine cascade are presented for a tip clearance levels of 0.08, 1.5, 3.0 percent of chord and compared with the help of boundary layer probes and that within and exit of a blade passage was done with a miniaturised five hole probe. End wall and blade tip surface static pressures were also obtained, in addition to flow visualisation studies. A strong horse-shoe vortex forms in front of the leading edge for zero clearance whereas this vortex does not appear for 3 percent clearance indicating that for large clearance the pressure forces have dominating infiuence than the viscous forces. In addition to normally known clearance vortex, a small tip separation vortex was noticed on the blade tip surface inside the tip gap. Due to the area contraction caused by the tip separation vortex, the fluid movign towards the tip gap from the pressure side is accelerated. Downstream of the vortex, the endwall pressure increases due to flow mixing. Both vortices increase in size and strength along the chord. The miring is incomplete in the aft portion of the blade. The tip gap velocity profiles exhibit wak like characteristics especially at axial positions where the mixing is incomplete. The passage vortex in the present investigations did not diminish with increase in clearance. The discharge coefhcient and the total pressure loss coefficient within the tip gap show similar tendency with lower values near the leading and trailing edge regions.