The confinement losses in air-guiding photonic bandgap fibers (PBGFs) with air hole missing are studied with the full-vector finite-element method. It is confirmed that there are two loss peaks (1.555 and 1.598 μm...The confinement losses in air-guiding photonic bandgap fibers (PBGFs) with air hole missing are studied with the full-vector finite-element method. It is confirmed that there are two loss peaks (1.555 and 1.598 μm) if there is a hole missing in the cladding far from the core. The closer to the core the hole missing is, the larger the confinement losses are, and even no mode could propagate in the core. The main power of the fundamental mode leaks from the core to the cladding defect. The quality of PBGFs can be improved through controlling the number and position of defects.展开更多
准确检测变电站中的设备缺陷并及时进行处理是保证电力系统安全运行的重要措施.针对表计缺陷图像背景复杂、目标尺寸不一、外形差别大等问题,提出基于改进YOLOv5(you only look once的第5个版本)的变电站表计缺陷检测算法.为了提高泛化...准确检测变电站中的设备缺陷并及时进行处理是保证电力系统安全运行的重要措施.针对表计缺陷图像背景复杂、目标尺寸不一、外形差别大等问题,提出基于改进YOLOv5(you only look once的第5个版本)的变电站表计缺陷检测算法.为了提高泛化能力、解决训练过程中样本不平衡问题,利用旋转和改变图像亮度的方法进行数据增广.通过引入坐标注意力机制,在聚焦缺陷特征的同时,能突出缺陷特征的差异.为了使边界框回归更快速准确,将EDIOU loss(effective distance intersection over union loss)代替CIOU loos(complete intersection over union loss).实验结果表明:6种算法中,该文算法的准确度、召回率和mAP(mean average preciscion)均最高,分别达85.1%,86.6%,87.3%.因此,该文算法具有优越性.展开更多
为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部...为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。展开更多
针对目前铝材表面缺陷检测算法在实际工程应用中检测精度低以及不够轻量化难以部署等问题,文章提出一种基于改进YOLOv5s的铝材表面缺陷检测方法。该算法以经典YOLOv5s模型为基础,将ShufflenNetV2-Block算法融合到主干网络backbone中,降...针对目前铝材表面缺陷检测算法在实际工程应用中检测精度低以及不够轻量化难以部署等问题,文章提出一种基于改进YOLOv5s的铝材表面缺陷检测方法。该算法以经典YOLOv5s模型为基础,将ShufflenNetV2-Block算法融合到主干网络backbone中,降低模型的计算复杂性;然后添加SE注意力机制,使注意力集中于缺陷相关区域,更好地区分类别之间的差异,提高分类性能和检测效率;最后优化损失函数,采用SIoU(S-intersection over union)替代CIoU,提升网络定位精度。结果表明:针孔类和斑点类缺陷检测精度比原版YOLOv5分别提升了8.3%和8.4%,mAP值提高了6.4%,提高了缺陷检测精度且降低了模型的大小和所占内存,更加便于移动端部署,有效改善了制造过程中漏检问题。展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61077084)
文摘The confinement losses in air-guiding photonic bandgap fibers (PBGFs) with air hole missing are studied with the full-vector finite-element method. It is confirmed that there are two loss peaks (1.555 and 1.598 μm) if there is a hole missing in the cladding far from the core. The closer to the core the hole missing is, the larger the confinement losses are, and even no mode could propagate in the core. The main power of the fundamental mode leaks from the core to the cladding defect. The quality of PBGFs can be improved through controlling the number and position of defects.
文摘准确检测变电站中的设备缺陷并及时进行处理是保证电力系统安全运行的重要措施.针对表计缺陷图像背景复杂、目标尺寸不一、外形差别大等问题,提出基于改进YOLOv5(you only look once的第5个版本)的变电站表计缺陷检测算法.为了提高泛化能力、解决训练过程中样本不平衡问题,利用旋转和改变图像亮度的方法进行数据增广.通过引入坐标注意力机制,在聚焦缺陷特征的同时,能突出缺陷特征的差异.为了使边界框回归更快速准确,将EDIOU loss(effective distance intersection over union loss)代替CIOU loos(complete intersection over union loss).实验结果表明:6种算法中,该文算法的准确度、召回率和mAP(mean average preciscion)均最高,分别达85.1%,86.6%,87.3%.因此,该文算法具有优越性.
文摘为了解决金属表面缺陷检测的漏检、误检等问题,提出了一种改进YOLOv3算法。首先,使用动态激活函数替换主干特征提取网络中所有残差块的激活函数,并加入了混合注意力机制,强化其对复杂缺陷目标的特征提取能力。然后,在特征金字塔网络部分新增一个104×104的特征层,并将浅层网络与深层网络进行逐层特征融合,增强算法对小缺陷目标检测的敏感性。最后,利用K-Means++聚类算法替换K-Means聚类算法,筛选出适用于金属表面缺陷检测的最优先验框尺寸,使目标定位更加准确。实验结果表明,改进YOLOv3算法的每秒检测帧数(frames per second,FPS)可达到32.3,平均精度均值(mean average precision,mAP)可达到78.69%,检测性能得到了明显提升。
文摘针对目前铝材表面缺陷检测算法在实际工程应用中检测精度低以及不够轻量化难以部署等问题,文章提出一种基于改进YOLOv5s的铝材表面缺陷检测方法。该算法以经典YOLOv5s模型为基础,将ShufflenNetV2-Block算法融合到主干网络backbone中,降低模型的计算复杂性;然后添加SE注意力机制,使注意力集中于缺陷相关区域,更好地区分类别之间的差异,提高分类性能和检测效率;最后优化损失函数,采用SIoU(S-intersection over union)替代CIoU,提升网络定位精度。结果表明:针孔类和斑点类缺陷检测精度比原版YOLOv5分别提升了8.3%和8.4%,mAP值提高了6.4%,提高了缺陷检测精度且降低了模型的大小和所占内存,更加便于移动端部署,有效改善了制造过程中漏检问题。