Dominant Finnish assortment pricing gives prices for sawlog and pulp wood volumes. Buyers buck stems to sawlogs using secret price matrices. Agreed dimensions allow wide range of sawlog volumes. Forest owners cannot o...Dominant Finnish assortment pricing gives prices for sawlog and pulp wood volumes. Buyers buck stems to sawlogs using secret price matrices. Agreed dimensions allow wide range of sawlog volumes. Forest owners cannot objectively compare biddings: timber trade is a lottery game. Bucking is analyzed in terms of sawlog, pulp wood, log cylinder, sawn wood, value-weighted sawn wood, and chips. Sawn wood and its value are computed from top diameter of the sawlog. Profit maximization requires buyers to buck logs producing smaller than maximal value, causing dead weight loss. Nominal assortment prices have unpredictable relation to effective stumpage price. Assortment pricing does not meet requirements of market economy. If sawmills linked to pulp mills buck smaller sawlog percentages than independent sawmills, as generally believed, they use higher price for chips in their own harvests than they pay for independent sawmills, indicating imperfect competition for chips. Sawn wood potential pricing is suggested which gives prices for sawn wood and chips coming both from sawlogs and pulp wood in reference bucking which maximizes sawn wood for given minimum and maximum log length and minimum top diameter. Simple algorithm generates feasible bucking schedules from which optimum can be selected using any objective. Pricing produces unit price for all commercial wood utilizing ratio of theoretical sawn wood and commercial volume in stand. Unit price can be compared to stem pricing and could be compared to assortment pricing if assortment pricing would produce predictable sawlog percentages. Sawn wood potential pricing is concrete, transparent, easy to compute, considers stem size and tapering, reduces trading cost and is less risky to buyers than stem pricing. It meets requirements of market economy. Readers can repeat computations using open-source software Jlp22.展开更多
CNOOC Limited,of which China National Offshore Oil Corporation(CNOOC)is the parent,recently posted its first-ever half-year loss as the plunge of crude oil prices destroy the profit at China’s biggest offshore oil an...CNOOC Limited,of which China National Offshore Oil Corporation(CNOOC)is the parent,recently posted its first-ever half-year loss as the plunge of crude oil prices destroy the profit at China’s biggest offshore oil and gas producer.The company swung to a 7.74 billion yuan(USD1.16billion)loss in the January-June period,compared to a展开更多
随着电动汽车(electric vehicle,EV)普及度的不断提高,工业园区内的EV用户日益增多,其充放电行为给园区综合能源系统(park integrated energy system,PIES)的规划运行带来极大挑战。文中提出考虑EV充放电意愿的PIES双层优化调度。首先,...随着电动汽车(electric vehicle,EV)普及度的不断提高,工业园区内的EV用户日益增多,其充放电行为给园区综合能源系统(park integrated energy system,PIES)的规划运行带来极大挑战。文中提出考虑EV充放电意愿的PIES双层优化调度。首先,基于动态实时电价、电池荷电量、电池损耗补偿、额外参与激励等因素建立充放电意愿模型,在此基础上得到改进的EV充放电模型;然后,以PIES总成本最小和EV充电费用最小为目标建立双层优化调度模型,通过Karush-Kuhn-Tucker(KKT)条件将内层模型转化为外层模型的约束条件,从而快速稳定地实现单层模型的求解;最后,进行仿真求解,设置3种不同场景,对比所提模型与一般充放电意愿模型,验证了文中所提引入EV充放电意愿模型的PIES双层优化调度的有效性和可行性。展开更多
The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and ...The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and underwriting. This model utilizes data analytics based on Artificial Intelligence to merge microfinance and car insurance services. Introducing and applying a no-claims bonus rate system, comprising base rates, variable rates, and final rates, to three key policyholder categories significantly reduces the occurrence and impact of claims while encouraging increased premium payments. We have enhanced frequency-severity models with eight machine learning algorithms and adjusted the Automated Actuarial Pricing and Underwriting Model for inflation, resulting in outstanding performance. Among the machine learning models utilized, the Random Forest (RANGER) achieved the highest Total Aggregate Comprehensive Automated Actuarial Loss Reserve Risk Pricing Balance (ACAALRRPB), establishing itself as the preferred model for developing Automated Actuarial Underwriting models tailored to specific policyholder categories.展开更多
文摘Dominant Finnish assortment pricing gives prices for sawlog and pulp wood volumes. Buyers buck stems to sawlogs using secret price matrices. Agreed dimensions allow wide range of sawlog volumes. Forest owners cannot objectively compare biddings: timber trade is a lottery game. Bucking is analyzed in terms of sawlog, pulp wood, log cylinder, sawn wood, value-weighted sawn wood, and chips. Sawn wood and its value are computed from top diameter of the sawlog. Profit maximization requires buyers to buck logs producing smaller than maximal value, causing dead weight loss. Nominal assortment prices have unpredictable relation to effective stumpage price. Assortment pricing does not meet requirements of market economy. If sawmills linked to pulp mills buck smaller sawlog percentages than independent sawmills, as generally believed, they use higher price for chips in their own harvests than they pay for independent sawmills, indicating imperfect competition for chips. Sawn wood potential pricing is suggested which gives prices for sawn wood and chips coming both from sawlogs and pulp wood in reference bucking which maximizes sawn wood for given minimum and maximum log length and minimum top diameter. Simple algorithm generates feasible bucking schedules from which optimum can be selected using any objective. Pricing produces unit price for all commercial wood utilizing ratio of theoretical sawn wood and commercial volume in stand. Unit price can be compared to stem pricing and could be compared to assortment pricing if assortment pricing would produce predictable sawlog percentages. Sawn wood potential pricing is concrete, transparent, easy to compute, considers stem size and tapering, reduces trading cost and is less risky to buyers than stem pricing. It meets requirements of market economy. Readers can repeat computations using open-source software Jlp22.
文摘CNOOC Limited,of which China National Offshore Oil Corporation(CNOOC)is the parent,recently posted its first-ever half-year loss as the plunge of crude oil prices destroy the profit at China’s biggest offshore oil and gas producer.The company swung to a 7.74 billion yuan(USD1.16billion)loss in the January-June period,compared to a
文摘随着电动汽车(electric vehicle,EV)普及度的不断提高,工业园区内的EV用户日益增多,其充放电行为给园区综合能源系统(park integrated energy system,PIES)的规划运行带来极大挑战。文中提出考虑EV充放电意愿的PIES双层优化调度。首先,基于动态实时电价、电池荷电量、电池损耗补偿、额外参与激励等因素建立充放电意愿模型,在此基础上得到改进的EV充放电模型;然后,以PIES总成本最小和EV充电费用最小为目标建立双层优化调度模型,通过Karush-Kuhn-Tucker(KKT)条件将内层模型转化为外层模型的约束条件,从而快速稳定地实现单层模型的求解;最后,进行仿真求解,设置3种不同场景,对比所提模型与一般充放电意愿模型,验证了文中所提引入EV充放电意愿模型的PIES双层优化调度的有效性和可行性。
文摘The Automated Actuarial Pricing and Underwriting Model has been enhanced and expanded through the implementation of Artificial Intelligence to automate three distinct actuarial functions: loss reserving, pricing, and underwriting. This model utilizes data analytics based on Artificial Intelligence to merge microfinance and car insurance services. Introducing and applying a no-claims bonus rate system, comprising base rates, variable rates, and final rates, to three key policyholder categories significantly reduces the occurrence and impact of claims while encouraging increased premium payments. We have enhanced frequency-severity models with eight machine learning algorithms and adjusted the Automated Actuarial Pricing and Underwriting Model for inflation, resulting in outstanding performance. Among the machine learning models utilized, the Random Forest (RANGER) achieved the highest Total Aggregate Comprehensive Automated Actuarial Loss Reserve Risk Pricing Balance (ACAALRRPB), establishing itself as the preferred model for developing Automated Actuarial Underwriting models tailored to specific policyholder categories.