In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the imag...In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the image to its original quality.The challenge lies in regenerating significantly compressed images into a state in which these become identifiable.Therefore,this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks(GAN).The generator in this network is based on theU-Net architecture.It features a newhourglass structure that preserves the characteristics of the deep layers.In addition,the network incorporates two loss functions to generate natural and high-quality images:Low Frequency(LF)loss and High Frequency(HF)loss.HF loss uses a pretrained VGG-16 network and is configured using a specific layer that best represents features.This can enhance the performance in the high-frequency region.In contrast,LF loss is used to handle the low-frequency region.The two loss functions facilitate the generation of images by the generator,which can mislead the discriminator while accurately generating high-and low-frequency regions.Consequently,by removing the blocking effects frommaximum lossy compressed images,images inwhich identities could be recognized are generated.This study represents a significant improvement over previous research in terms of the image resolution performance.展开更多
In this paper, we introduce a novel approach to compress jointly a medical image and a multichannel bio-signals (e.g. ECG, EEG). This technique is based on the idea of Multimodal Compression (MC) which requires only o...In this paper, we introduce a novel approach to compress jointly a medical image and a multichannel bio-signals (e.g. ECG, EEG). This technique is based on the idea of Multimodal Compression (MC) which requires only one codec instead of multiple codecs. Objectively, biosignal samples are merged in the spatial domain of the image using a specific mixing function. Afterwards, the whole mixture is compressed using JPEG 2000. The spatial mixing function inserts samples in low-frequency regions, defined using a set of operations, including down-sampling, interpolation, and quad-tree decomposition. The decoding is achieved by inverting the process using a separation function. Results show that this technique allows better performances in terms of Compression Ratio (CR) compared to approaches which encode separately modalities. The reconstruction quality is evaluated on a set of test data using the PSNR (Peak Signal Noise Ratio) and the PRD (Percent Root Mean Square Difference), respectively for the image and biosignals.展开更多
In this document, we present new techniques for near-lossless and lossy compression of SAR imagery saved in PNG and binary formats of magnitude and phase data based on the application of transforms, dimensionality red...In this document, we present new techniques for near-lossless and lossy compression of SAR imagery saved in PNG and binary formats of magnitude and phase data based on the application of transforms, dimensionality reduction methods, and lossless compression. In particular, we discuss the use of blockwise integer to integer transforms, subsequent application of a dimensionality reduction method, and Burrows-Wheeler based lossless compression for the PNG data and the use of high correlation based modeling of sorted transform coefficients for the raw floating point magnitude and phase data. The gains exhibited are substantial over the application of different lossless methods directly on the data and competitive with existing lossy approaches. The methods presented are effective for large scale processing of similar data formats as they are heavily based on techniques which scale well on parallel architectures.展开更多
[Objective] This paper aimed to provide a new method for genetic data clustering by analyzing the clustering effect of genetic data clustering algorithm based on the minimum coding length. [Method] The genetic data cl...[Objective] This paper aimed to provide a new method for genetic data clustering by analyzing the clustering effect of genetic data clustering algorithm based on the minimum coding length. [Method] The genetic data clustering was regarded as high dimensional mixed data clustering. After preprocessing genetic data, the dimensions of the genetic data were reduced by principal component analysis, when genetic data presented Gaussian-like distribution. This distribution of genetic data could be clustered effectively through lossy data compression, which clustered the genes based on a simple clustering algorithm. This algorithm could achieve its best clustering result when the length of the codes of encoding clustered genes reached its minimum value. This algorithm and the traditional clustering algorithms were used to do the genetic data clustering of yeast and Arabidopsis, and the effectiveness of the algorithm was verified through genetic clustering internal evaluation and function evaluation. [Result] The clustering effect of the new algorithm in this study was superior to traditional clustering algorithms, and it also avoided the problems of subjective determination of clustering data and sensitiveness to initial clustering center. [Conclusion] This study provides a new clustering method for the genetic data clustering.展开更多
Presents a digital watermarking technique based on discrete fractional Fourier transform (DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original...Presents a digital watermarking technique based on discrete fractional Fourier transform (DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original image by the information of watermark, and concludes from experimental results that the proposed technique is robust to lossy compression attack.展开更多
基金supported by the Technology Development Program(S3344882)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the image to its original quality.The challenge lies in regenerating significantly compressed images into a state in which these become identifiable.Therefore,this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks(GAN).The generator in this network is based on theU-Net architecture.It features a newhourglass structure that preserves the characteristics of the deep layers.In addition,the network incorporates two loss functions to generate natural and high-quality images:Low Frequency(LF)loss and High Frequency(HF)loss.HF loss uses a pretrained VGG-16 network and is configured using a specific layer that best represents features.This can enhance the performance in the high-frequency region.In contrast,LF loss is used to handle the low-frequency region.The two loss functions facilitate the generation of images by the generator,which can mislead the discriminator while accurately generating high-and low-frequency regions.Consequently,by removing the blocking effects frommaximum lossy compressed images,images inwhich identities could be recognized are generated.This study represents a significant improvement over previous research in terms of the image resolution performance.
文摘In this paper, we introduce a novel approach to compress jointly a medical image and a multichannel bio-signals (e.g. ECG, EEG). This technique is based on the idea of Multimodal Compression (MC) which requires only one codec instead of multiple codecs. Objectively, biosignal samples are merged in the spatial domain of the image using a specific mixing function. Afterwards, the whole mixture is compressed using JPEG 2000. The spatial mixing function inserts samples in low-frequency regions, defined using a set of operations, including down-sampling, interpolation, and quad-tree decomposition. The decoding is achieved by inverting the process using a separation function. Results show that this technique allows better performances in terms of Compression Ratio (CR) compared to approaches which encode separately modalities. The reconstruction quality is evaluated on a set of test data using the PSNR (Peak Signal Noise Ratio) and the PRD (Percent Root Mean Square Difference), respectively for the image and biosignals.
文摘In this document, we present new techniques for near-lossless and lossy compression of SAR imagery saved in PNG and binary formats of magnitude and phase data based on the application of transforms, dimensionality reduction methods, and lossless compression. In particular, we discuss the use of blockwise integer to integer transforms, subsequent application of a dimensionality reduction method, and Burrows-Wheeler based lossless compression for the PNG data and the use of high correlation based modeling of sorted transform coefficients for the raw floating point magnitude and phase data. The gains exhibited are substantial over the application of different lossless methods directly on the data and competitive with existing lossy approaches. The methods presented are effective for large scale processing of similar data formats as they are heavily based on techniques which scale well on parallel architectures.
文摘[Objective] This paper aimed to provide a new method for genetic data clustering by analyzing the clustering effect of genetic data clustering algorithm based on the minimum coding length. [Method] The genetic data clustering was regarded as high dimensional mixed data clustering. After preprocessing genetic data, the dimensions of the genetic data were reduced by principal component analysis, when genetic data presented Gaussian-like distribution. This distribution of genetic data could be clustered effectively through lossy data compression, which clustered the genes based on a simple clustering algorithm. This algorithm could achieve its best clustering result when the length of the codes of encoding clustered genes reached its minimum value. This algorithm and the traditional clustering algorithms were used to do the genetic data clustering of yeast and Arabidopsis, and the effectiveness of the algorithm was verified through genetic clustering internal evaluation and function evaluation. [Result] The clustering effect of the new algorithm in this study was superior to traditional clustering algorithms, and it also avoided the problems of subjective determination of clustering data and sensitiveness to initial clustering center. [Conclusion] This study provides a new clustering method for the genetic data clustering.
文摘Presents a digital watermarking technique based on discrete fractional Fourier transform (DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original image by the information of watermark, and concludes from experimental results that the proposed technique is robust to lossy compression attack.