鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究...鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究子批数量和大小、机器分配、工人分配、子批加工顺序之间的耦合关系,设计了一种改进的多目标混合灰狼-鲸鱼群算法(manyobjective hybrid grey wolf optimizer and whale swarm algorithm,MO-HGWSA).根据模型特点,设计了一种两阶段编码和解码方案表示问题的可行解;利用多种引导策略提高算法的进化效率;设计了局部搜索策略,增强算法的局部搜索能力.最后引入案例验证算法的有效性,结果表明本文所提算法在收敛性、分布性和解集支配关系方面均优于对比算法.展开更多
This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several proper...This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several properties of the optimal solutions are explored. With the help of these optimality properties, a polynomial time approximation algorithm is developed by a new method. The new method adopts a shift technique to obtain a feasible solution of subproblem and takes the optimal solution of the subproblem as an approximation solution of our problem. The worst case performance for the approximation algorithm is proven to be (4√2 + 5)/7. Finally, an instance illustrates that the bound is tight.展开更多
文摘鉴于实际生产中工人的能力和加工效率存在差异,本文提出了考虑工人差异性和刀具限制的多资源约束并行机分批调度问题,以最小化最大完工时间、最小化交付时间偏差为优化目标,构建了工人熟练度、刀具资源约束的混合整数线性规划模型,研究子批数量和大小、机器分配、工人分配、子批加工顺序之间的耦合关系,设计了一种改进的多目标混合灰狼-鲸鱼群算法(manyobjective hybrid grey wolf optimizer and whale swarm algorithm,MO-HGWSA).根据模型特点,设计了一种两阶段编码和解码方案表示问题的可行解;利用多种引导策略提高算法的进化效率;设计了局部搜索策略,增强算法的局部搜索能力.最后引入案例验证算法的有效性,结果表明本文所提算法在收敛性、分布性和解集支配关系方面均优于对比算法.
基金supported by National Natural Science Foundation of China (No. 10671108 and 70971076)Found for the Doctoral Program of Higher Education of Ministry of Education of China (No. 20070446001)+1 种基金Innovation Planning Project of Shandong Province (No. SDYY06034)Foundation of Qufu Normal University (No. XJZ200849)
文摘This paper presents an economic lot-sizing problem with perishable inventory and general economies of scale cost functions. For the case with backlogging allowed, a mathematical model is formulated, and several properties of the optimal solutions are explored. With the help of these optimality properties, a polynomial time approximation algorithm is developed by a new method. The new method adopts a shift technique to obtain a feasible solution of subproblem and takes the optimal solution of the subproblem as an approximation solution of our problem. The worst case performance for the approximation algorithm is proven to be (4√2 + 5)/7. Finally, an instance illustrates that the bound is tight.