Asian lotus(Nelumbo nucifera Gaertn.)is an aquatic plant with ornamental,cultural,economic,and ecological values.China has abundant germplasm resources of Asian lotus.However,in many areas,the wild Asian lotuses have ...Asian lotus(Nelumbo nucifera Gaertn.)is an aquatic plant with ornamental,cultural,economic,and ecological values.China has abundant germplasm resources of Asian lotus.However,in many areas,the wild Asian lotuses have been destroyed and the germplasms is now facing extinction.In addition,the knowledge of the genetic diversity of the wild Asian lotus in China is poor.To identify and protect the germplasms of Chinese wild Asian lotus,eleven genomic-SSR primers,three EST-SSR primers,and three chloroplast DNA primers were used to investigate the genetic diversity among 69 samples of wild Asian lotus from 25 locations in northern China.The genetic diversity of 27 samples of wild Asian lotus from southern China and other countries,the ancient Asian lotus,Asian lotus cultivars from China,and Asian-American hybrids was also compared.The genetic diversity of the wild Asian lotus from northern China was characterized as medium,and themean values of observed heterozygosity(Ho)and expected heterozygosity(He)were 0.087 and 0.552,respectively.Based on a UPGMA dendrogram and STRUCTURE analysis,the wild Asian lotus samples in northern China were divided into three groups.The wild Asian lotus samples from northern China contained 16 haplotypes.The Nei’s genetic distance between the wild Asian lotus samples from the Songhua River basin and the Liao River basin in northeastern China was relatively small,and these germplasms might be relatively primitive compared to those from other regions.This study provides essential information regarding the genetic diversity of the wild Asian lotus resources in northern China,and provides a basis for further analysis of population-level genetic evolution through high-throughput sequencing.展开更多
Heavy metals have seriously contaminated soil and water, and done harm to public health. Academician WANG Naiyan proposed that ion-implantation technique should be exploited for environmental bioremediation by mutatin...Heavy metals have seriously contaminated soil and water, and done harm to public health. Academician WANG Naiyan proposed that ion-implantation technique should be exploited for environmental bioremediation by mutating and breeding plants or microbes. By implanting N^+ into Taikonglian No.l, we have selected and bred two lotus cultivars, Jingguang No.1 and Jingguang No.2. The present study aims at analyzing the feasibility that irradiation can be used for remediation of soil and water from heavy metals. Compared with parent Taikonglian No.l, the uptaking and accumulating ability of heavy metals in two mutated cultivars was obviously improved. So ion implantation technique can indeed be used in bioremediation of heavy metals in soil and water, but it is hard to select and breed a cultivar which can remedy the soil and water from all the heavy metals.展开更多
To achieve the dual goals of high yield and good quality with low environmental costs,slow-release fertilizer(SRF)has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fer...To achieve the dual goals of high yield and good quality with low environmental costs,slow-release fertilizer(SRF)has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fertilizer.However,the optimal amount of SRF and how it would promote lotus rhizome quality remain unclear.This study was designed to investigate the photosynthetic characteristics and the synthesis,accumulation,and physicochemical properties of lotus rhizome starches under six SRF levels(CK,S1,S2,S3,S4,and S5).Compared with CK(0 kg ha^(–1)),the net photosynthetic rate(P_(n))and SPAD values of leaves remained at higher levels under SRF treatment.Further research showed that SRF increased the lotus rhizome yield,the contents of amylose,amylopectin,and total starch,and the number of starch granules.Among the six SRF levels,S3(1035 kg ha^(–1))showed the greatest difference from CK and produced the highest levels.With the increasing SRF levels,the peak,hot and final viscosities decreased at first and then increased,but the setback viscosity and pasting temperature increased.In order to interpret these changes at the molecular level,the activities of key enzymes and relative expression levels of starch accumulation related genes were analyzed.Each of these parameters also increased under SRF treatment,especially under the S3 treatment.The results of this study show that SRF,especially S3(1035 kg ha^(–1)),is a suitable fertilizer option for lotus planting which can improve lotus rhizome quality by affecting starch accumulations related enzymes and genes.These results will be useful for SRF application to high-quality lotus rhizome production with low environmental costs.展开更多
Sacred lotus(Nelumbo nucifera or lotus) is an important aquatic plant in horticulture and ecosystems. As a foundation for exploring genomic variation and evolution among different germplasms, we re-sequenced 19 indivi...Sacred lotus(Nelumbo nucifera or lotus) is an important aquatic plant in horticulture and ecosystems. As a foundation for exploring genomic variation and evolution among different germplasms, we re-sequenced 19 individuals from three cultivated temperate lotus subgroups(rhizome,seed and flower lotus), one wild temperate lotus subgroup(wild lotus), one tropical lotus group(Thai lotus) and an outgroup(Nelumbo lutea). Through genetic diversity and polymorphism analysis by non-missing SNP sites widely distributed in the whole genome, we confirmed that wild and Thai lotus exhibited greater differentiation with a higher genomic diversity compared to cultivated lotus. Rhizome lotus had the lowest genomic diversity and a closer relationship to wild lotus, whereas the genomes of seed and flower lotus were admixed. Genes in energy metabolism process and plant immunity evolved rapidly in lotus, reflecting local adaptation.We established that candidate genes in genomic regions with significant differentiation associated with temperate and tropical lotus divergence always exhibited highly divergent expression pattern. Together, this study comprehensive and credible interpretates important patterns of genetic diversity and relationships, gene evolution, and genomic signature from ecotypic differentiation of sacred lotus.展开更多
基金funded by Shanghai Administration Bureau of Landscape and City Appearance(Grant No.G182412).
文摘Asian lotus(Nelumbo nucifera Gaertn.)is an aquatic plant with ornamental,cultural,economic,and ecological values.China has abundant germplasm resources of Asian lotus.However,in many areas,the wild Asian lotuses have been destroyed and the germplasms is now facing extinction.In addition,the knowledge of the genetic diversity of the wild Asian lotus in China is poor.To identify and protect the germplasms of Chinese wild Asian lotus,eleven genomic-SSR primers,three EST-SSR primers,and three chloroplast DNA primers were used to investigate the genetic diversity among 69 samples of wild Asian lotus from 25 locations in northern China.The genetic diversity of 27 samples of wild Asian lotus from southern China and other countries,the ancient Asian lotus,Asian lotus cultivars from China,and Asian-American hybrids was also compared.The genetic diversity of the wild Asian lotus from northern China was characterized as medium,and themean values of observed heterozygosity(Ho)and expected heterozygosity(He)were 0.087 and 0.552,respectively.Based on a UPGMA dendrogram and STRUCTURE analysis,the wild Asian lotus samples in northern China were divided into three groups.The wild Asian lotus samples from northern China contained 16 haplotypes.The Nei’s genetic distance between the wild Asian lotus samples from the Songhua River basin and the Liao River basin in northeastern China was relatively small,and these germplasms might be relatively primitive compared to those from other regions.This study provides essential information regarding the genetic diversity of the wild Asian lotus resources in northern China,and provides a basis for further analysis of population-level genetic evolution through high-throughput sequencing.
基金supported by National Natural Science Foundation of China (No.11075019)Beijing Ion-Irradiating-Breeding Research Platform Project of China
文摘Heavy metals have seriously contaminated soil and water, and done harm to public health. Academician WANG Naiyan proposed that ion-implantation technique should be exploited for environmental bioremediation by mutating and breeding plants or microbes. By implanting N^+ into Taikonglian No.l, we have selected and bred two lotus cultivars, Jingguang No.1 and Jingguang No.2. The present study aims at analyzing the feasibility that irradiation can be used for remediation of soil and water from heavy metals. Compared with parent Taikonglian No.l, the uptaking and accumulating ability of heavy metals in two mutated cultivars was obviously improved. So ion implantation technique can indeed be used in bioremediation of heavy metals in soil and water, but it is hard to select and breed a cultivar which can remedy the soil and water from all the heavy metals.
基金financial support they received from the National Key R&D Program of China(2020YFD1000300)the earmarked fund for China Agriculture Research System(CARS-24)the HighLevel Talent Support Plan(Lv-Yang-Jin-Feng),Yangzhou,China。
文摘To achieve the dual goals of high yield and good quality with low environmental costs,slow-release fertilizer(SRF)has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fertilizer.However,the optimal amount of SRF and how it would promote lotus rhizome quality remain unclear.This study was designed to investigate the photosynthetic characteristics and the synthesis,accumulation,and physicochemical properties of lotus rhizome starches under six SRF levels(CK,S1,S2,S3,S4,and S5).Compared with CK(0 kg ha^(–1)),the net photosynthetic rate(P_(n))and SPAD values of leaves remained at higher levels under SRF treatment.Further research showed that SRF increased the lotus rhizome yield,the contents of amylose,amylopectin,and total starch,and the number of starch granules.Among the six SRF levels,S3(1035 kg ha^(–1))showed the greatest difference from CK and produced the highest levels.With the increasing SRF levels,the peak,hot and final viscosities decreased at first and then increased,but the setback viscosity and pasting temperature increased.In order to interpret these changes at the molecular level,the activities of key enzymes and relative expression levels of starch accumulation related genes were analyzed.Each of these parameters also increased under SRF treatment,especially under the S3 treatment.The results of this study show that SRF,especially S3(1035 kg ha^(–1)),is a suitable fertilizer option for lotus planting which can improve lotus rhizome quality by affecting starch accumulations related enzymes and genes.These results will be useful for SRF application to high-quality lotus rhizome production with low environmental costs.
基金financially supported by National Natural Science Foundation of China (No. 31471899)the Knowledge Innovation Project of the Chinese Academy of Sciences (No. Y455421Z02)
文摘Sacred lotus(Nelumbo nucifera or lotus) is an important aquatic plant in horticulture and ecosystems. As a foundation for exploring genomic variation and evolution among different germplasms, we re-sequenced 19 individuals from three cultivated temperate lotus subgroups(rhizome,seed and flower lotus), one wild temperate lotus subgroup(wild lotus), one tropical lotus group(Thai lotus) and an outgroup(Nelumbo lutea). Through genetic diversity and polymorphism analysis by non-missing SNP sites widely distributed in the whole genome, we confirmed that wild and Thai lotus exhibited greater differentiation with a higher genomic diversity compared to cultivated lotus. Rhizome lotus had the lowest genomic diversity and a closer relationship to wild lotus, whereas the genomes of seed and flower lotus were admixed. Genes in energy metabolism process and plant immunity evolved rapidly in lotus, reflecting local adaptation.We established that candidate genes in genomic regions with significant differentiation associated with temperate and tropical lotus divergence always exhibited highly divergent expression pattern. Together, this study comprehensive and credible interpretates important patterns of genetic diversity and relationships, gene evolution, and genomic signature from ecotypic differentiation of sacred lotus.