A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an S...A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.展开更多
In this article, we have derived a new and more general formulation of Love waves in arbitrarily irregular multi-layered media by using the global generalized reflection/transmission (abbreviated to R/T thereafter) ma...In this article, we have derived a new and more general formulation of Love waves in arbitrarily irregular multi-layered media by using the global generalized reflection/transmission (abbreviated to R/T thereafter) matrices method developed earlier by Chen [17~20]. From the basic principle that the modal solutions are the non-trivial solutions of the free elastodynamic equation under appropriate boundary conditions, we naturally derived the characteristic frequencies and the corresponding distorted modes of Love wave in irregular multi-layered media. Moreover, we have derived the corresponding excitation formulation of Love waves in such laterally heterogeneous media by using the general solution of elastodynamic equation [17~20]. Similar to the result for laterally homogeneous layered structure, the Love waves radiated from a point source in irregular multi-layered media can be expressed as a superposition of distorted modes. Since the structure model used here is quite arbitrary, it can be used for展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11104314
文摘A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.
文摘In this article, we have derived a new and more general formulation of Love waves in arbitrarily irregular multi-layered media by using the global generalized reflection/transmission (abbreviated to R/T thereafter) matrices method developed earlier by Chen [17~20]. From the basic principle that the modal solutions are the non-trivial solutions of the free elastodynamic equation under appropriate boundary conditions, we naturally derived the characteristic frequencies and the corresponding distorted modes of Love wave in irregular multi-layered media. Moreover, we have derived the corresponding excitation formulation of Love waves in such laterally heterogeneous media by using the general solution of elastodynamic equation [17~20]. Similar to the result for laterally homogeneous layered structure, the Love waves radiated from a point source in irregular multi-layered media can be expressed as a superposition of distorted modes. Since the structure model used here is quite arbitrary, it can be used for