Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are pre...Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.展开更多
The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyc...The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone.展开更多
To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial co...To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
In the present, investigation an attempt has been made to study the behavior of reinforced flyash beds under repeated loads by conducting carefully designed experiments. The main objective of the experiments conducted...In the present, investigation an attempt has been made to study the behavior of reinforced flyash beds under repeated loads by conducting carefully designed experiments. The main objective of the experiments conducted is to evaluate the beneficial effects of using flyash as a backfill material in the reinforced beds to resist the repeated loads. As no unique standard equipment is available for the application of repeated loads and to measure the response, different researchers have designed and fabricated different types of equipments for the testing. The repeated load of known intensity with waveform type and frequency is applied on the surface and embedded footing in unreinforced and reinforced flyash beds. The response of the flyash beds, in the form of settlement is measured using linear variable differential transducers. The experimental results clearly demonstrated that the provision of reinforcement in the flyash beds is effective in improving the performance of both surface and embedded footing under repeated loads.展开更多
基金the New Century Excellent Talents in University Under Grant No.290Heilongjiang Key Program on Science and Technology Under Grant No. GC04A609arbin Key Program on Science and Technology Under Grant No. 2004AA9CS187.
文摘Tests of nine angle-steel concrete column (ASCC) specimens under low cyclic loading are described in a companion paper (Zheng and Ji, 2008). In this paper, the skeleton curves from the numerical simulation are presented, and show good agreement with the test results. Furthermore, parametric studies are conducted to explore the influence of factors such as the axial compression ratio, shear steel plate ratio, steel ratio, prismatic concrete compression strength, yield strength of angle steel and shear span ratio, etc., on the monotonic load-displacement curves of the ASCCs. Based on a statistical analysis of the calculated results, hysteretic models for load-displacement and moment-curvature are proposed, which agree well with the test results. Finally, some suggestions concerning the conformation of ASCCs are proposed, which could be useful in engineering practice.
基金Project(200801410005) supported by Doctoral Foundation of Ministry of Education of China
文摘The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone.
基金Supported by National Natural Science Foundation of China (No. 50878141)Hebei Natural Science Foundation,China (No. E2011202013)High School of Hebei Science and Technology Research Youth Foundation,China(No. Q2012083)
文摘To investigate the seismic behavior of specially shaped column joints with X-shaped reinforcement,two groups of specimens with or without X-shaped reinforcement in joint core region were tested under constant axial compression load and low reversed cyclic loading,which imitated low to moderate earthquake force.The seismic behavior of specially shaped column joints with X-shaped reinforcement in terms of bearing capacity,displacement,ductility,hysteretic curve,stiffness degradation and energy dissipation was studied and compared to that without Xshaped reinforcement in joint core region.With the damage estimation model,the accumulated damage was analyzed.The shearing capacity formula of specially shaped column joints reinforced by X-shaped reinforcement was proposed with a simple form.The test results show that X-shaped reinforcement is an effective measure for improving the seismic behavior of specially shaped column joints including deformation behavior,ductility and hysteretic characteristic.All specimens were damaged with gradual stiffness degeneration.In addition,X-shaped reinforcement in the joint core region is an effective way to lighten the degree of cumulated damage.The good seismic performance obtained from the specially shaped column joint with X-shaped reinforcement can be used in engineering applications.The test value is higher than the calculated value,which indicates that the formula is safe for the design of specially shaped column joints.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
文摘In the present, investigation an attempt has been made to study the behavior of reinforced flyash beds under repeated loads by conducting carefully designed experiments. The main objective of the experiments conducted is to evaluate the beneficial effects of using flyash as a backfill material in the reinforced beds to resist the repeated loads. As no unique standard equipment is available for the application of repeated loads and to measure the response, different researchers have designed and fabricated different types of equipments for the testing. The repeated load of known intensity with waveform type and frequency is applied on the surface and embedded footing in unreinforced and reinforced flyash beds. The response of the flyash beds, in the form of settlement is measured using linear variable differential transducers. The experimental results clearly demonstrated that the provision of reinforcement in the flyash beds is effective in improving the performance of both surface and embedded footing under repeated loads.