期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Towards Fully Secure 5G Ultra-Low Latency Communications: A Cost-Security Functions Analysis
1
作者 Borja Bordel Ramón Alcarria +3 位作者 Joaquin Chung Rajkumar Kettimuthu Tomás Robles Iván Armuelles 《Computers, Materials & Continua》 SCIE EI 2023年第1期855-880,共26页
Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable ... Future components to enhance the basic,native security of 5G networks are either complex mechanisms whose impact in the requiring 5G communications are not considered,or lightweight solutions adapted to ultrareliable low-latency communications(URLLC)but whose security properties remain under discussion.Although different 5G network slices may have different requirements,in general,both visions seem to fall short at provisioning secure URLLC in the future.In this work we address this challenge,by introducing cost-security functions as a method to evaluate the performance and adequacy of most developed and employed non-native enhanced security mechanisms in 5G networks.We categorize those new security components into different groups according to their purpose and deployment scope.We propose to analyze them in the context of existing 5G architectures using two different approaches.First,using model checking techniques,we will evaluate the probability of an attacker to be successful against each security solution.Second,using analytical models,we will analyze the impact of these security mechanisms in terms of delay,throughput consumption,and reliability.Finally,we will combine both approaches using stochastic cost-security functions and the PRISM model checker to create a global picture.Our results are first evidence of how a 5G network that covers and strengthened all security areas through enhanced,dedicated non-native mechanisms could only guarantee secure URLLC with a probability of∼55%. 展开更多
关键词 5G networks security analysis secure low latency COMMUNICATIONS URLLC eMBBC
下载PDF
Mobile Edge Computing and Field Trial Results for 5G Low Latency Scenario 被引量:7
2
作者 Jianmin Zhang Weiliang Xie +1 位作者 Fengyi Yang Qi Bi 《China Communications》 SCIE CSCD 2016年第S2期174-182,共9页
Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology ... Through enabling the IT and cloud computation capacities at Radio Access Network(RAN),Mobile Edge Computing(MEC) makes it possible to deploy and provide services locally.Therefore,MEC becomes the potential technology to satisfy the requirements of 5G network to a certain extent,due to its functions of services localization,local breakout,caching,computation offloading,network context information exposure,etc.Especially,MEC can decrease the end-to-end latency dramatically through service localization and caching,which is key requirement of 5G low latency scenario.However,the performance of MEC still needs to be evaluated and verified for future deployment.Thus,the concept of MEC is introduced into5 G architecture and analyzed for different 5G scenarios in this paper.Secondly,the evaluation of MEC performance is conducted and analyzed in detail,especially for network end-to-end latency.In addition,some challenges of the MEC are also discussed for future deployment. 展开更多
关键词 mobile edge computing(MEC) 5G network architecture low latency
下载PDF
Higher Speed Passive Optical Networks for Low Latency Services 被引量:1
3
作者 ZHANG Weiliang YUAN Liquan 《ZTE Communications》 2021年第2期61-66,共6页
Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying ... Latency sensitive services have attracted much attention lately and imposedstringent requirements on the access network design. Passive optical networks (PONs) providea potential long-term solution for the underlying transport network supporting theseservices. This paper discusses latency limitations in PON and recent progress in PONstandardization to improve latency. Experimental results of a low latency PON system arepresented as a proof of concept. 展开更多
关键词 passive optical networks time-division multiple access wavelength-division multiple access low latency
下载PDF
REA-MAC:A low latency routing-enhanced asynchronous duty-cycle MAC protocol for wireless sensor networks
4
作者 唐宏伟 曹建农 +1 位作者 孙彩霞 卢凯 《Journal of Central South University》 SCIE EI CAS 2013年第3期678-687,共10页
Many energy efficiency asynchronous duty-cycle MAC(media access control) protocols have been proposed in recent years.However,in these protocols,wireless sensor nodes almost choose their wakeup time randomly during th... Many energy efficiency asynchronous duty-cycle MAC(media access control) protocols have been proposed in recent years.However,in these protocols,wireless sensor nodes almost choose their wakeup time randomly during the operational cycle,which results in the packet delivery latency increased significantly on the multiple hops path.To reduce the packet delivery latency on multi-hop path and energy waste of the sender's idle listening,a new low latency routing-enhanced asynchronous duty-cycle MAC protocol was presented,called REA-MAC.In REA-MAC,each sensor node decided when it waked up to send the beacon based on cross-layer routing information.Furthermore,the sender adaptively waked up based on the relationship between the transmission request time and the wakeup time of its next hop node.The simulation results show that REA-MAC reduces delivery latency by 60% compared to RI-MAC and reduces 8.77% power consumption on average.Under heavy traffic,REA-MAC's throughput is 1.48 times of RI-MAC's. 展开更多
关键词 wireless sensor networks ASYNCHRONOUS duty-cycle media access control protocol idle listening low latency
下载PDF
Low latency systolic multipliers for finite field GF(2m) based on irreducible polynomials
5
作者 谢佳峰 贺建军 桂卫华 《Journal of Central South University》 SCIE EI CAS 2012年第5期1283-1289,共7页
Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity,but its latency is usually very large.Thus,two low latency systolic multipliers over GF(2m) based on general irre... Systolic implementation of multiplication over GF(2m) is usually very efficient in area-time complexity,but its latency is usually very large.Thus,two low latency systolic multipliers over GF(2m) based on general irreducible polynomials and irreducible pentanomials are presented.First,a signal flow graph(SFG) is used to represent the algorithm for multiplication over GF(2m).Then,the two low latency systolic structures for multiplications over GF(2m) based on general irreducible polynomials and pentanomials are presented from the SFG by suitable cut-set retiming,respectively.Analysis indicates that the proposed two low latency designs involve at least one-third less area-delay product when compared with the existing designs,To the authors' knowledge,the time-complexity of the structures is the lowest found in literature for systolic GF(2m) multipliers based on general irreducible polynomials and pentanomials.The proposed low latency designs are regular and modular,and therefore they are suitable for many time critical applications. 展开更多
关键词 finite field finite field multiplication systolic structure low latency POLYNOMIALS
下载PDF
Energy Minimization for Heterogenous Traffic Coexistence with Puncturing in Mobile Edge Computing-Based Industrial Internet of Things
6
作者 Wang Xue Wang Ying +1 位作者 Fei Zixuan Zhao Junwei 《China Communications》 SCIE CSCD 2024年第10期167-180,共14页
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform... Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks. 展开更多
关键词 energy minimization enhanced mobile broadband(eMBB)and ultra-reliable low latency communications(URLLC)coexistence industrial Internet of Things(IIoT) mobile edge computing(MEC) PUNCTURING
下载PDF
Quantum-Edge Cloud Computing for IoT: Bridging the Gap between Cloud, Edge, and Quantum Technologies
7
作者 Shahanaz Akter Md. Khairul Islam Bhuiyan +3 位作者 Md. Bahauddin Badhon Habib Md. Hasan Fatema Akter Mohammad Nahid Ul Islam 《Advances in Internet of Things》 2024年第4期99-120,共22页
The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand... The rapid expansion of the Internet of Things (IoT) has driven the need for advanced computational frameworks capable of handling the complex data processing and security challenges that modern IoT applications demand. However, traditional cloud computing frameworks face significant latency, scalability, and security issues. Quantum-Edge Cloud Computing (QECC) offers an innovative solution by integrating the computational power of quantum computing with the low-latency advantages of edge computing and the scalability of cloud computing resources. This study is grounded in an extensive literature review, performance improvements, and metrics data from Bangladesh, focusing on smart city infrastructure, healthcare monitoring, and the industrial IoT sector. The discussion covers vital elements, including integrating quantum cryptography to enhance data security, the critical role of edge computing in reducing response times, and cloud computing’s ability to support large-scale IoT networks with its extensive resources. Through case studies such as the application of quantum sensors in autonomous vehicles, the practical impact of QECC is demonstrated. Additionally, the paper outlines future research opportunities, including developing quantum-resistant encryption techniques and optimizing quantum algorithms for edge computing. The convergence of these technologies in QECC has the potential to overcome the current limitations of IoT frameworks, setting a new standard for future IoT applications. 展开更多
关键词 Quantum-Edge Cloud Computing (QECC) Internet of Things (IoT) low latency Quantum Computing (QC) Scalable Cloud Services
下载PDF
Recent Trends of In-Vehicle Time Sensitive Networking Technologies, Applications and Challenges 被引量:1
8
作者 Yanli Xu Jian Shang Hao Tang 《China Communications》 SCIE CSCD 2023年第11期30-55,共26页
With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency an... With the vigorous development of automobile industry,in-vehicle network is also constantly upgraded to meet data transmission requirements of emerging applications.The main transmission requirements are low latency and certainty especially for autonomous driving.Time sensitive networking(TSN)based on Ethernet gives a possible solution to these requirements.Previous surveys usually investigated TSN from a general perspective,which referred to TSN of various application fields.In this paper,we focus on the application of TSN to the in-vehicle networks.For in-vehicle networks,we discuss all related TSN standards specified by IEEE 802.1 work group up to now.We further overview and analyze recent literature on various aspects of TSN for automotive applications,including synchronization,resource reservation,scheduling,certainty,software and hardware.Application scenarios of TSN for in-vehicle networks are analyzed one by one.Since TSN of in-vehicle network is still at a very initial stage,this paper also gives insights on open issues,future research directions and possible solutions. 展开更多
关键词 automobile industry deterministic transmission in-vehicle network low latency time sensitive networking(TSN)
下载PDF
Beam Position and Beam Hopping Design for LEO Satellite Communications 被引量:1
9
作者 Leyi Lyu Chenhao Qi 《China Communications》 SCIE CSCD 2023年第7期29-42,共14页
The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,... The numbers of beam positions(BPs)and time slots for beam hopping(BH)dominate the latency of LEO satellite communications.Aiming at minimizing the number of BPs subject to a predefined requirement on the radius of BP,a low-complexity user density-based BP design scheme is proposed,where the original problem is decomposed into two subproblems,with the first one to find the sparsest user and the second one to determine the corresponding best BP.In particular,for the second subproblem,a user selection and smallest BP radius algorithm is proposed,where the nearby users are sequentially selected until the constraint of the given BP radius is no longer satisfied.These two subproblems are iteratively solved until all the users are selected.To further reduce the BP radius,a duplicated user removal algorithm is proposed to decrease the number of the users covered by two or more BPs.Aiming at minimizing the number of time slots subject to the no co-channel interference(CCI)constraint and the traffic demand constraint,a low-complexity CCI-free BH design scheme is proposed,where the BPs having difficulty in satisfying the constraints are considered to be illuminated in priory.Simulation results verify the effectiveness of the proposed schemes. 展开更多
关键词 beam hopping(BH)design beam position(BP)design low earth orbit(LEO) low latency satellite communications
下载PDF
Uniquely Decomposable Constellation Group-Based Sparse Vector Coding for Short Packet Communications
10
作者 Xuewan Zhang Hongyang Chen +3 位作者 Di Zhang Ganyu Qin Battulga Davaasambuu Takuro Sato 《China Communications》 SCIE CSCD 2023年第5期119-134,共16页
Sparse vector coding(SVC)is emerging as a potential technology for short packet communications.To further improve the block error rate(BLER)performance,a uniquely decomposable constellation group-based SVC(UDCG-SVC)is... Sparse vector coding(SVC)is emerging as a potential technology for short packet communications.To further improve the block error rate(BLER)performance,a uniquely decomposable constellation group-based SVC(UDCG-SVC)is proposed in this article.Additionally,in order to achieve an optimal BLER performance of UDCG-SVC,a problem to optimize the coding gain of UDCG-based superimposed constellation is formulated.Given the energy of rotation constellations in UDCG,this problem is solved by converting it into finding the maximized minimum Euclidean distance of the superimposed constellation.Simulation results demonstrate the validness of our derivation.We also find that the proposed UDCGSVC has better BLER performance compared to other SVC schemes,especially under the high order modulation scenarios. 展开更多
关键词 ultra-reliable and low latency communications sparse vector coding uniquely decomposable constellation group constellation rotation short packet communications
下载PDF
A Collaborative Machine Learning Scheme for Traffic Allocation and Load Balancing for URLLC Service in 5G and Beyond
11
作者 Andreas G. Papidas George C. Polyzos 《Journal of Computer and Communications》 2023年第11期197-207,共11页
Key challenges for 5G and Beyond networks relate with the requirements for exceptionally low latency, high reliability, and extremely high data rates. The Ultra-Reliable Low Latency Communication (URLLC) use case is t... Key challenges for 5G and Beyond networks relate with the requirements for exceptionally low latency, high reliability, and extremely high data rates. The Ultra-Reliable Low Latency Communication (URLLC) use case is the trickiest to support and current research is focused on physical or MAC layer solutions, while proposals focused on the network layer using Machine Learning (ML) and Artificial Intelligence (AI) algorithms running on base stations and User Equipment (UE) or Internet of Things (IoT) devices are in early stages. In this paper, we describe the operation rationale of the most recent relevant ML algorithms and techniques, and we propose and validate ML algorithms running on both cells (base stations/gNBs) and UEs or IoT devices to handle URLLC service control. One ML algorithm runs on base stations to evaluate latency demands and offload traffic in case of need, while another lightweight algorithm runs on UEs and IoT devices to rank cells with the best URLLC service in real-time to indicate the best one cell for a UE or IoT device to camp. We show that the interplay of these algorithms leads to good service control and eventually optimal load allocation, under slow load mobility. . 展开更多
关键词 5G and B5G Networks Ultra Reliable low latency Communications (URLLC) Machine Learning (ML) for 5G Temporal Difference Methods (TDM) Monte Carlo Methods Policy Gradient Methods
下载PDF
Efficient and Low-Latency Systolic Array Architecture for Full Searches in Block-Matching Motion Estimation
12
作者 张武健 邱晓海 +1 位作者 周润德 陈弘毅 《Tsinghua Science and Technology》 SCIE EI CAS 2001年第4期361-368,共8页
This paper describes an efficient, low latency systolic array architecture for full searches in block matching motion estimation. Conventional one dimensional systolic array architecture is used to develop a nove... This paper describes an efficient, low latency systolic array architecture for full searches in block matching motion estimation. Conventional one dimensional systolic array architecture is used to develop a novel ring like systolic array architecture through operator rescheduling considering the symmetry of the data flow. High latency delay due to stuffing of the array pipeline in the conventional architecture was eliminated. The new architecture delivers a higher throughput rate, achieves higher processor utilization, and has low power consumption. In addition, the minimum memory bandwidth of the conventional architecture is preserved. 展开更多
关键词 motion estimation full search systolic array low latency low power
原文传递
Novel MAC Layer Proposal for URLLC in IndustrialWireless Sensor Networks 被引量:2
13
作者 Mohsin Raza Sajjad Hussain +1 位作者 Hoa Le-Minh Nauman Aslam 《ZTE Communications》 2017年第B06期50-59,共10页
Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environment... Ultra-reliable and low-latency communications(URLLC) has become a fundamental focus of future industrial wireless sensor net-works(IWSNs). With the evolution of automation and process control in industrial environments, the need for increased reliabilityand reduced latencies in wireless communications is even pronounced. Furthermore, the 5G systems specifically target the URLLCin selected areas and industrial automation might turn into a suitable venue for future IWSNs, running 5G as a high speed inter-process linking technology. In this paper, a hybrid multi-channel scheme for performance and throughput enhancement of IWSNsis proposed. The scheme utilizes the multiple frequency channels to increase the overall throughput of the system along with theincrease in reliability. A special purpose frequency channel is defined, which facilitates the failed communications by retransmis-sions where the retransmission slots are allocated according to the priority level of failed communications of different nodes. Ascheduler is used to formulate priority based scheduling for retransmission in TDMA based communication slots of this channel.Furthermore, in carrier-sense multiple access with collision avoidance(CSMA/CA) based slots, a frequency polling is introducedto limit the collisions. Mathematical modelling for performance metrics is also presented. The performance of the proposed schemeis compared with that of IEEE802.15.4e, where the performance is evaluated on the basis of throughput, reliability and the num-ber of nodes accommodated in a cluster. The proposed scheme offers a notable increase in the reliability and throughput over theexisting IEEE802.15.4e Low Latency Deterministic Networks(LLDN) standard. 展开更多
关键词 industrial wireless sensor network(IWSN) IEEE802.15.4e low latency Deterministic Network(LLDN) low latency communica-tions(LLC) ultra-reliable low latency communication(URLLC)
下载PDF
Reliable and Energy-Aware Job Offloading at Terahertz Frequencies for Mobile Edge Computing 被引量:2
14
作者 Sha Xie Haoran Li +2 位作者 Lingxiang Li Zhi Chen Shaoqian Li 《China Communications》 SCIE CSCD 2020年第12期17-36,共20页
In this paper,we co-design the transmission power and the offloading strategy for job offloading to a mobile edge computing(MEC)server at Terahertz(THz)frequencies.The goal is to minimize the communication energy cons... In this paper,we co-design the transmission power and the offloading strategy for job offloading to a mobile edge computing(MEC)server at Terahertz(THz)frequencies.The goal is to minimize the communication energy consumption while providing ultra-reliable low end-to-end latency(URLLC)services.To that end,we first establish a novel reliability framework,where the end-to-end(E2E)delay equals a weighted sum of the local computing delay,the communication delay and the edge computing delay,and the reliability is defined as the probability that the E2E delay remains below a certain pre-defined threshold.This reliability gives a full view of the statistics of the E2E delay,thus constituting advancement over prior works that have considered only average delays.Based on this framework,we establish the communication energy consumption minimization problem under URLLC constraints.This optimization problem is non-convex.To handle that issue,we first consider the special single-user case,where we derive the optimal solution by analyzing the structure of the optimization problem.Further,based on the analytical result for the single-user case,we decouple the optimization problem for multi-user scenarios into several sub-optimization problems and propose a sub-optimal algorithm to solve it.Numerical results verify the performance of the proposed algorithm. 展开更多
关键词 Terahertz(THz)communications mobile edge computing(MEC) ultra-reliable low end-to-end latency(URLLC)services green communications
下载PDF
Deep reinforcement learning based computation offloading and resource allocation for low-latency fog radio access networks 被引量:6
15
作者 G.M.Shafiqur Rahman Tian Dang Manzoor Ahmed 《Intelligent and Converged Networks》 2020年第3期243-257,共15页
Fog Radio Access Networks(F-RANs)have been considered a groundbreaking technique to support the services of Internet of Things by leveraging edge caching and edge computing.However,the current contributions in computa... Fog Radio Access Networks(F-RANs)have been considered a groundbreaking technique to support the services of Internet of Things by leveraging edge caching and edge computing.However,the current contributions in computation offloading and resource allocation are inefficient;moreover,they merely consider the static communication mode,and the increasing demand for low latency services and high throughput poses tremendous challenges in F-RANs.A joint problem of mode selection,resource allocation,and power allocation is formulated to minimize latency under various constraints.We propose a Deep Reinforcement Learning(DRL)based joint computation offloading and resource allocation scheme that achieves a suboptimal solution in F-RANs.The core idea of the proposal is that the DRL controller intelligently decides whether to process the generated computation task locally at the device level or offload the task to a fog access point or cloud server and allocates an optimal amount of computation and power resources on the basis of the serving tier.Simulation results show that the proposed approach significantly minimizes latency and increases throughput in the system. 展开更多
关键词 fog radio access networks computation offloading mode selection resource allocation distributed computation low latency deep reinforcement learning
原文传递
Wireless Network Requirements and Solutions for the Future Circular Collider:A Hostile Indoor Environment
16
作者 Ahmed Bannour Yichuang Sun 《China Communications》 SCIE CSCD 2021年第10期193-203,共11页
The European organization for nuclear research(CERN)is planning a high performance particle collider by 2050,which will update the currently used Large Hadron Collider(LHC).The design of the new experiment facility in... The European organization for nuclear research(CERN)is planning a high performance particle collider by 2050,which will update the currently used Large Hadron Collider(LHC).The design of the new experiment facility includes the definition of a suitable communication infrastructure to support the future needs of scientists.The huge amount of data collected by the measurement devices call for a data rate of at least 1 Gb/s per node,while the need of timely control of instruments requires a low latency of the order of 0.01μs.Moreover,the main tunnel will be 100 km long,and will need appropriate coverage for voice and data traffic,in a special underground environment subject also to strong radiations.Reliable voice,data and video transmission in a tunnel of this length is necessary to ensure timely and localized intervention,reducing access time.In addition,using wireless communication for voice,control and data acquisition of accelerator technical systems could lead to a significant reduction in cabling costs,installation times and maintenance efforts.The communication infrastructure of the Future Circular Collider(FCC)tunnel must be able to circumvent the problems of radioactivity,omnipresent in the tunnel.Current technologies transceivers cannot transmit in such a severely radioactive environment.This is due to the immediate destruction of any active or passive equipment by radioactivity.The scope of this paper is to determine the feasibility of robust wireless transmission in an underground radioactive tunnel environment.The network infrastructure design to meet the demand will be introduced,and the performance of different wireless technologies will be evaluated. 展开更多
关键词 future circular collider LHC TUNNEL low latency harsh indoor wireless communications
下载PDF
Optimal allocation of random access period for wireless body area network
17
作者 Jin hyuk KIM Chang ki HONG Sang bang CHOI 《Journal of Central South University》 SCIE EI CAS 2013年第8期2195-2201,共7页
A wireless body area network (WBAN) allows integration of low power, invasive or noninvasive miniaturized sensors around a human body. WBAN is expected to become a basic infrastructure element for human health monitor... A wireless body area network (WBAN) allows integration of low power, invasive or noninvasive miniaturized sensors around a human body. WBAN is expected to become a basic infrastructure element for human health monitoring. The Task Group 6 of IEEE 802.15 is formed to address specific needs of body area network. It defines a medium access control layer that supports various physical layers. In this work, we analyze the efficiency of simple slotted ALOHA scheme, and then propose a novel allocation scheme that controls the random access period and packet transmission probability to optimize channel efficiency. NS-2 simulations have been carried out to evaluate its performance. The simulation results demonstrate significant performance improvement in latency and throughput using the proposed MAC algorithm. 展开更多
关键词 wireless body area network channel efficiency quality of service low latency
下载PDF
BCTCP:A Feedback-Based Congestion Control Method
18
作者 Yuyu Zhao Guang Cheng +2 位作者 Weici Zhang Xin Chen Jin Li 《China Communications》 SCIE CSCD 2020年第6期13-25,共13页
Delay and throughput are the two network indicators that users most care about.Traditional congestion control methods try to occupy buffer aggressively until packet loss being detected,causing high delay and variation... Delay and throughput are the two network indicators that users most care about.Traditional congestion control methods try to occupy buffer aggressively until packet loss being detected,causing high delay and variation.Using AQM and ECN can highly reduce packet drop rate and delay,however they may also lead to low utilization.Managing queue size of routers properly means a lot to congestion control method.Keeping traffic size varying around bottleneck bandwidth creates some degree of persistent queue in the router,which brings in additional delay into network unwillingly,but a corporation between sender and router can keep it under control.Proper persistent queue not only keeps routers being fully utilized all the time,but also lower the variation of throughput and delay,achieving the balance between delay and utilization.In this paper,we present BCTCP(Buffer Controllable TCP),a congestion control protocol based on explicit feedback from routers.It requires sender,receiver and routers cooperating with each other,in which senders adjust their sending rate according to the multiple bit load factor information from routers.It keeps queue length of bottleneck under control,leading to very good delay and utilization result,making it more applicable to complex network environments. 展开更多
关键词 explicit congestion control active queue management delay variation low latency high throughput
下载PDF
T-IP: A Self-Trustworthy and Secure Internet Protocol
19
作者 Xiaofeng Wang Huan Zhou +3 位作者 Jinshu Su Baosheng Wang Qianqian Xing Pengkun Li 《China Communications》 SCIE CSCD 2018年第2期1-14,共14页
IPsec has become an important supplement of IP to provide security protection. However, the heavyweight IPsec has a high transmission overhead and latency, and it cannot provide the address accountability. We propose ... IPsec has become an important supplement of IP to provide security protection. However, the heavyweight IPsec has a high transmission overhead and latency, and it cannot provide the address accountability. We propose the self-trustworthy and secure Internet protocol(T-IP) for authenticated and encrypted network layer communications. T-IP has the following advantages:(1) Self-Trustworthy IP address.(2) Low connection latency and transmission overhead.(3) Reserving the important merit of IP to be stateless.(4) Compatible with the existing TCP/IP architecture. We theoretically prove the security of our shared secret key in T-IP and the resistance to the known session key attack of our security-enhanced shared secret key calculation. Moreover, we analyse the possibility of the application of T-IP, including its resilience against the man-in-the-middle attack and Do S attack. The evaluation shows that T-IP has a much lower transmission overhead and connection latency compared with IPsec. 展开更多
关键词 identity-based cryptography self-trustworthy LIGHTWEIGHT low latency in-cremental deployment
下载PDF
Optimizing deep learning inference on mobile devices with neural network accelerators
20
作者 Zeng Xi Xu Yunlong Zhi Tian 《High Technology Letters》 EI CAS 2019年第4期417-425,共9页
Deep learning has now been widely used in intelligent apps of mobile devices.In pursuit of ultra-low power and latency,integrating neural network accelerators(NNA)to mobile phones has become a trend.However,convention... Deep learning has now been widely used in intelligent apps of mobile devices.In pursuit of ultra-low power and latency,integrating neural network accelerators(NNA)to mobile phones has become a trend.However,conventional deep learning programming frameworks are not well-developed to support such devices,leading to low computing efficiency and high memory-occupation.To address this problem,a 2-stage pipeline is proposed for optimizing deep learning model inference on mobile devices with NNAs in terms of both speed and memory-footprint.The 1 st stage reduces computation workload via graph optimization,including splitting and merging nodes.The 2 nd stage goes further by optimizing at compilation level,including kernel fusion and in-advance compilation.The proposed optimizations on a commercial mobile phone with an NNA is evaluated.The experimental results show that the proposed approaches achieve 2.8×to 26×speed up,and reduce the memory-footprint by up to 75%. 展开更多
关键词 machine learning inference neural network accelerator(NNA) low latency kernel fusion in-advance compilation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部