Nano material based drug delivery system have received great attention in clinical application due to their high therapeutic efficacy and lower side effects than classical method,multi-functional nanomaterial also hav...Nano material based drug delivery system have received great attention in clinical application due to their high therapeutic efficacy and lower side effects than classical method,multi-functional nanomaterial also have shown the excellent performance at cancer theranostic and durg tracking in vivo and in vitro.However,most of these works are influenced by the bio-toxicity of applied nanomaterials,which could influence the diagnostic results and treatment effect.Therefore,we have prepared a high biocompatibility porous carbon nanospheres(PCNs) based nano-system(PCN-siRNA-DOX-FA) for targeted drug delivery and the ranostic.The surface modifications have increased dispersion and stability of the PCNs,and folic acid(FA) had enhanced the active target ability for FA receptor positive cell lines.Moreover,through the siRNA structure and doxorubicin(DOX) loading,biological and chemical combined multi-therapy was achieved in cancerous cells.This constructed nano-system could positively improve the biotoxicity problem of nanomaterial and provide a potential platform for clinical cancer theranostic applications.展开更多
通过对碳纳米场效应晶体管(Carbon Nanotube Field Effect Transistor,CNFET)和灵敏放大器原理的研究,提出了一种基于CNFET的高速低功耗三值灵敏放大器设计方案。该方案首先剖析三值反相器电路结构,采用交叉耦合反相器作为三值锁存器;...通过对碳纳米场效应晶体管(Carbon Nanotube Field Effect Transistor,CNFET)和灵敏放大器原理的研究,提出了一种基于CNFET的高速低功耗三值灵敏放大器设计方案。该方案首先剖析三值反相器电路结构,采用交叉耦合反相器作为三值锁存器;其次结合输入输出信号分离方法,提高放大差分信号速度;然后利用使能信号控制电路状态,降低三值灵敏放大器功耗。采用32nm CNFET标准模型库进行HSPICE仿真,结果表明所设计的电路逻辑功能正确;芯片成品率高达96.48%,具有较强的稳定性,且与利用CMOS设计的二值灵敏放大器相比工作速度提高64%,功耗降低83.4%。展开更多
基金support from the Project Fund for Shandong Key R&D Program (No.2017GGX20121)
文摘Nano material based drug delivery system have received great attention in clinical application due to their high therapeutic efficacy and lower side effects than classical method,multi-functional nanomaterial also have shown the excellent performance at cancer theranostic and durg tracking in vivo and in vitro.However,most of these works are influenced by the bio-toxicity of applied nanomaterials,which could influence the diagnostic results and treatment effect.Therefore,we have prepared a high biocompatibility porous carbon nanospheres(PCNs) based nano-system(PCN-siRNA-DOX-FA) for targeted drug delivery and the ranostic.The surface modifications have increased dispersion and stability of the PCNs,and folic acid(FA) had enhanced the active target ability for FA receptor positive cell lines.Moreover,through the siRNA structure and doxorubicin(DOX) loading,biological and chemical combined multi-therapy was achieved in cancerous cells.This constructed nano-system could positively improve the biotoxicity problem of nanomaterial and provide a potential platform for clinical cancer theranostic applications.