Early investigations of dielectric permittivity of rigid polyurethane foams at low frequencies were made on petrochemical-origin foams,mainly by means of parallel plate capacitors.In the present investigation biopolyo...Early investigations of dielectric permittivity of rigid polyurethane foams at low frequencies were made on petrochemical-origin foams,mainly by means of parallel plate capacitors.In the present investigation biopolyol was synthesized from Latvia-grown rapeseeds’oil by the transesterification method with triethanolamine,in an environmentally friendly process,without emission of harmful substances,at temperatures 175℃±5℃.Rigid,closed-cell rapeseed oil polyol polyurethane biofoams and petrochemical foams were made ensuring content of the renewable rapeseed oil polyol in ready foams 27 wt.%–29 wt.%.Dielectric permittivity of the polyurethane foams and the underlying monolithic petrochemical-origin polyurethane and biopolyurethane was measured with a non-destructive dielectric spectrometer equipped with a capacitive sensor of one-side access type at 16 discrete frequencies distributed geometrically over the band 10 Hz,…,330 kHz.Permittivity value of the gaseous phase in the closed-cells was estimated to beεg≈1.001 that corresponds to the values,characteristic for the most of gases.Dielectric permittivity of petrochemical polyurethane foams and the mentioned biofoams was compared with permittivity of polyurethane foams from industrial producers Sika JSC and General Plastics Manufacturing Co.Polyurethane foams of the developed formulation exhibit competitive,low dielectric permittivity,not exceeding that of the foams from industrial producers:petrochemical foams up to 550 kg/m^(3) and the mentioned biofoams,comprising the renewable rapeseed oil polyol,up to densities 230–250 kg/m^(3).Considering petrochemical-origin polyurethane foams as a heterogeneous media“Polymer—gaseous phase”,the applicability of the rule of mixture and Maxwell–Garnett equation to model mathematically the dependence of effective dielectric permittivity on the volume fraction of phases was showed.展开更多
The development of dielectric materials with low permittivity and low loss is a great challenge in wireless communication.In this study,LiLn(PO_(3))_(4)(Ln=La,Sm,Eu)ceramic systems were successfully prepared using the...The development of dielectric materials with low permittivity and low loss is a great challenge in wireless communication.In this study,LiLn(PO_(3))_(4)(Ln=La,Sm,Eu)ceramic systems were successfully prepared using the traditional solid-state method.X-ray diffraction analysis indicated that the LiLn(PO_(3))_(4)ceramics crystallized in a monoclinic structure when sintered at 850–940℃.The characteristic peak shifted to higher angles with variations in the Ln element,which was ascribed to a reduction in the cell volume.Further analysis by structure refinement revealed that the reduction in the cell volume resulted from the decrease in chemical bond lengths and the compression of[LiO_(4)]and[PO_(4)]tetrahedra.Remarkably,the LiLn(PO_(3))_(4)ceramic system displayed exceptional performance at low sintering temperatures(910–925℃),including a high quality factor(Q·f)of 41,607–75,968 GHz,low temperature coefficient of resonant frequency(τ_(f))ranging from−19.64 to−47.49 ppm/℃,low permittivity(ε_(r))between 5.04 and 5.26,and low density(3.04–3.26 g/cm^(3)).The application of Phillips–van Vechten–Levine(P–V–L)theory revealed that the increased Q·f value of the LiLn(PO_(3))_(4)systems can be attributed to the enhanced packing fraction,bond covalency,and lattice energy,and the stability of τ_(f) was associated with the increase in the bond energy.Furthermore,a prototype microstrip patch antenna using LiEu(PO_(3))_(4) ceramics was fabricated.The measurement results demonstrated excellent antenna performance with a bandwidth of 360 MHz and a peak gain of 5.11 dB at a central frequency of 5.08 GHz.Therefore,low-εr LiLn(PO_(3))_(4)ceramic systems are promising candidates for microwave/millimeter-wave communication.展开更多
In this study, low-temperature fired CaMg1−xLi2xSi2O6 microwave dielectric ceramics were prepared via the traditional solid-state reaction method. In this process, 0.4 wt% Li2CO3-B2O3-SiO2-CaCO3-Al2O3 (LBSCA) glass wa...In this study, low-temperature fired CaMg1−xLi2xSi2O6 microwave dielectric ceramics were prepared via the traditional solid-state reaction method. In this process, 0.4 wt% Li2CO3-B2O3-SiO2-CaCO3-Al2O3 (LBSCA) glass was added as a sintering aid. The results showed that ceramics consisted of CaMgSi2O6 as the main phase. The second phases were CaSiO3 always existing and Li2SiO3 occurring at substitution content x > 0.05. Li+ substitution effectively lowered sintering temperature due to 0.4 wt% LBSCA and contributed to grain densification, and the most homogeneous morphology could be observed at x = 0.05. The effects of relative density, the second phase, and ionic polarizability on dielectric constant (εr) were investigated. The quality factor (Q × f) varied with packing fraction that concerned the second phase. Moreover, the temperature coefficient of the resonant frequency (τf) was influenced by MgO6 octahedral distortion and bond valence. Excellent dielectric properties of the CaMg1−xLi2xSi2O6 ceramic was exhibited at x = 0.05 with εr = 7.44, Q × f = 41,017 GHz (f = 15.1638 GHz), and τf = −59.3 ppm/°C when sintered at 900 °C. It had a good application prospect in the field of low-temperature co-fired ceramic (LTCC) substrate and devices.展开更多
Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of pract...Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of practical use for permittivity prediction,unsatisfactory predictability and universality impede rational design of new high-performance materials.In this work,based on a dataset of 254 single-phase microwave dielectric ceramics(MWDCs),machine learning(ML)methods established a high accuracy model for permittivity prediction and gave insights of quantitative chemistry/structureproperty relationships.We employed five commonly-used algorithms,and introduced 32 intrinsic chemical,structural and thermodynamic features which have correlations with permittivity for modeling.Machine learning results help identify the permittivity decisive factors,including polarizability per unit volume,average bond length,and average cell volume per atom.The feature-property relationships were discussed.The optimal model constructed by support vector regression with radial basis function kernel was validated its superior predictability and generalization by verification dataset.Low permittivity material systems were screened from a dataset of~3300 materials without reported microwave permittivity by high-throughput prediction using optimal model.Several predicted low permittivity ceramics were synthesized,and the experimental results agree well with ML prediction,which confirmed the reliability of the prediction model.展开更多
Bi doped SrTiO3 ceramics with Sr deficiency,i.e.Sr1-1.5xBixTiO3(x=0,0.01,0.05,0.1),were prepared via conventional solid-state reaction route.A colossal permittivity(CP)over 104 with low dielectric loss less than 0.05w...Bi doped SrTiO3 ceramics with Sr deficiency,i.e.Sr1-1.5xBixTiO3(x=0,0.01,0.05,0.1),were prepared via conventional solid-state reaction route.A colossal permittivity(CP)over 104 with low dielectric loss less than 0.05wasobtained in x=0.05 Sr1-1.5xBixTiO3 ceramics.In addition,the dielectric constant is maintained at a value greater than 104 in the range of 102-105 Hz and almost frequency independent.Phase structure analysis and density functional theory calculations suggest that the Bi·Sr-V"Sr-Bi·Sr defect complex with hole-pinned defect-dipoles maybe responsible for the high-performance CP properties.This work gives a new way to achieve high performance CP materials in ABO3 perovskite ceramics.展开更多
文摘Early investigations of dielectric permittivity of rigid polyurethane foams at low frequencies were made on petrochemical-origin foams,mainly by means of parallel plate capacitors.In the present investigation biopolyol was synthesized from Latvia-grown rapeseeds’oil by the transesterification method with triethanolamine,in an environmentally friendly process,without emission of harmful substances,at temperatures 175℃±5℃.Rigid,closed-cell rapeseed oil polyol polyurethane biofoams and petrochemical foams were made ensuring content of the renewable rapeseed oil polyol in ready foams 27 wt.%–29 wt.%.Dielectric permittivity of the polyurethane foams and the underlying monolithic petrochemical-origin polyurethane and biopolyurethane was measured with a non-destructive dielectric spectrometer equipped with a capacitive sensor of one-side access type at 16 discrete frequencies distributed geometrically over the band 10 Hz,…,330 kHz.Permittivity value of the gaseous phase in the closed-cells was estimated to beεg≈1.001 that corresponds to the values,characteristic for the most of gases.Dielectric permittivity of petrochemical polyurethane foams and the mentioned biofoams was compared with permittivity of polyurethane foams from industrial producers Sika JSC and General Plastics Manufacturing Co.Polyurethane foams of the developed formulation exhibit competitive,low dielectric permittivity,not exceeding that of the foams from industrial producers:petrochemical foams up to 550 kg/m^(3) and the mentioned biofoams,comprising the renewable rapeseed oil polyol,up to densities 230–250 kg/m^(3).Considering petrochemical-origin polyurethane foams as a heterogeneous media“Polymer—gaseous phase”,the applicability of the rule of mixture and Maxwell–Garnett equation to model mathematically the dependence of effective dielectric permittivity on the volume fraction of phases was showed.
基金National Natural Science Foundation of China(Nos.52272117 and 52171141)the National Key R&D Program of China(Nos.2022YFB3505104 and 2022YFB3706604)The authors are thankful to Professors Zeming Qi and Chuansheng Hu in IR beamline workstation of National Synchrotron Radiation Laboratory(NSRL)for the IR measurement.The authors thank Professor Lanling Zhao and Shiyanjia Lab(www.shiyanjia.com)for the support of first-principles calculations.
文摘The development of dielectric materials with low permittivity and low loss is a great challenge in wireless communication.In this study,LiLn(PO_(3))_(4)(Ln=La,Sm,Eu)ceramic systems were successfully prepared using the traditional solid-state method.X-ray diffraction analysis indicated that the LiLn(PO_(3))_(4)ceramics crystallized in a monoclinic structure when sintered at 850–940℃.The characteristic peak shifted to higher angles with variations in the Ln element,which was ascribed to a reduction in the cell volume.Further analysis by structure refinement revealed that the reduction in the cell volume resulted from the decrease in chemical bond lengths and the compression of[LiO_(4)]and[PO_(4)]tetrahedra.Remarkably,the LiLn(PO_(3))_(4)ceramic system displayed exceptional performance at low sintering temperatures(910–925℃),including a high quality factor(Q·f)of 41,607–75,968 GHz,low temperature coefficient of resonant frequency(τ_(f))ranging from−19.64 to−47.49 ppm/℃,low permittivity(ε_(r))between 5.04 and 5.26,and low density(3.04–3.26 g/cm^(3)).The application of Phillips–van Vechten–Levine(P–V–L)theory revealed that the increased Q·f value of the LiLn(PO_(3))_(4)systems can be attributed to the enhanced packing fraction,bond covalency,and lattice energy,and the stability of τ_(f) was associated with the increase in the bond energy.Furthermore,a prototype microstrip patch antenna using LiEu(PO_(3))_(4) ceramics was fabricated.The measurement results demonstrated excellent antenna performance with a bandwidth of 360 MHz and a peak gain of 5.11 dB at a central frequency of 5.08 GHz.Therefore,low-εr LiLn(PO_(3))_(4)ceramic systems are promising candidates for microwave/millimeter-wave communication.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.61771104 and U1809215).
文摘In this study, low-temperature fired CaMg1−xLi2xSi2O6 microwave dielectric ceramics were prepared via the traditional solid-state reaction method. In this process, 0.4 wt% Li2CO3-B2O3-SiO2-CaCO3-Al2O3 (LBSCA) glass was added as a sintering aid. The results showed that ceramics consisted of CaMgSi2O6 as the main phase. The second phases were CaSiO3 always existing and Li2SiO3 occurring at substitution content x > 0.05. Li+ substitution effectively lowered sintering temperature due to 0.4 wt% LBSCA and contributed to grain densification, and the most homogeneous morphology could be observed at x = 0.05. The effects of relative density, the second phase, and ionic polarizability on dielectric constant (εr) were investigated. The quality factor (Q × f) varied with packing fraction that concerned the second phase. Moreover, the temperature coefficient of the resonant frequency (τf) was influenced by MgO6 octahedral distortion and bond valence. Excellent dielectric properties of the CaMg1−xLi2xSi2O6 ceramic was exhibited at x = 0.05 with εr = 7.44, Q × f = 41,017 GHz (f = 15.1638 GHz), and τf = −59.3 ppm/°C when sintered at 900 °C. It had a good application prospect in the field of low-temperature co-fired ceramic (LTCC) substrate and devices.
基金The authors would like to acknowledge the supports from the Key-Area Research and Development Program of Guangdong Province(2020B010176001)the National Natural Science Foundation of China(61871369)M.S.Ma acknowledges the Youth Innovation Promotion Association of CAS and Shanghai Rising-Star Program(20QA1410200).
文摘Low permittivity microwave dielectric ceramics(MWDCs)are attracting great interest because of their promising applications in the new era of 5G and IoT.Although theoretical rules and computational methods are of practical use for permittivity prediction,unsatisfactory predictability and universality impede rational design of new high-performance materials.In this work,based on a dataset of 254 single-phase microwave dielectric ceramics(MWDCs),machine learning(ML)methods established a high accuracy model for permittivity prediction and gave insights of quantitative chemistry/structureproperty relationships.We employed five commonly-used algorithms,and introduced 32 intrinsic chemical,structural and thermodynamic features which have correlations with permittivity for modeling.Machine learning results help identify the permittivity decisive factors,including polarizability per unit volume,average bond length,and average cell volume per atom.The feature-property relationships were discussed.The optimal model constructed by support vector regression with radial basis function kernel was validated its superior predictability and generalization by verification dataset.Low permittivity material systems were screened from a dataset of~3300 materials without reported microwave permittivity by high-throughput prediction using optimal model.Several predicted low permittivity ceramics were synthesized,and the experimental results agree well with ML prediction,which confirmed the reliability of the prediction model.
基金This work was supported by the National Natural Science Foundation of China[Grant Nos.51677033,51802061,51702069].
文摘Bi doped SrTiO3 ceramics with Sr deficiency,i.e.Sr1-1.5xBixTiO3(x=0,0.01,0.05,0.1),were prepared via conventional solid-state reaction route.A colossal permittivity(CP)over 104 with low dielectric loss less than 0.05wasobtained in x=0.05 Sr1-1.5xBixTiO3 ceramics.In addition,the dielectric constant is maintained at a value greater than 104 in the range of 102-105 Hz and almost frequency independent.Phase structure analysis and density functional theory calculations suggest that the Bi·Sr-V"Sr-Bi·Sr defect complex with hole-pinned defect-dipoles maybe responsible for the high-performance CP properties.This work gives a new way to achieve high performance CP materials in ABO3 perovskite ceramics.