[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cul...[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cultivars were used to study the changes in relative conductivity and cell injury rate of pear branches under low temperature stress,and the semi-lethal temperature(LT_(50))of pear branches was analyzed by fitting Logistic equation.[Results]The relative conductivity and cell injury rate of pear branches took on the trend of slow increase,rapid increase,and slow increase the decrease of treatment temperature.The LC_(50) of the nine pear cultivars were as follows:Nanguo pear-33.9℃,Wanyu-32.3℃,Red D Anjou-31.8℃,Jinfeng-31.3℃,Wujiuxiang-29.2℃,20 th Century Pear-29.1℃,Hanxiang-35.1℃,Yuluxiang-27.9℃ and Korla Fragrant Pear-29.2℃.[Conclusions]The semi-lethal temperature could reflect the cold resistance of pear trees,and Wanxiang had better cold resistance.The evaluation of cold resistance and semi-lethal temperature of pear cultivars can provide theoretical basis for regional extension and breeding of cold-resistant pear cultivars.展开更多
The poly(epoxy-N-methylaniline)conductive organic carrier was used as the bonding phase of the low-temperature conductive silver paste.Then,this was mixed with different proportions of silver powder to prepare the low...The poly(epoxy-N-methylaniline)conductive organic carrier was used as the bonding phase of the low-temperature conductive silver paste.Then,this was mixed with different proportions of silver powder to prepare the low-temperature conductive silver paste.Afterwards,the effect of the conductive organic carrier on the properties of the low-temperature conductive silver paste was determined by IR,DMA and SEM.The results revealed that the prepared conductive paste has good conductivity,film-forming performance,printing performance,low-temperature curing performance,and anti-aging performance.When the mass percentage of the bonding phase/conductive phase was 40/60,the lowest volume resistivity of the conductive silver paste was 4.9×10^(−6)Ω⋅cm,and the conductivity was the best.展开更多
By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been...By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.展开更多
With 7 familiar Pleurotus ostreatus strains in Beijing region as the test materials,the randomized block design method was adopted to analyze the antagonistic effects,mycelial growth rate,yield of mushroom at low temp...With 7 familiar Pleurotus ostreatus strains in Beijing region as the test materials,the randomized block design method was adopted to analyze the antagonistic effects,mycelial growth rate,yield of mushroom at low temperature season,total biological efficiency and agronomic characteristics of fruit bodies.The results showed that there were antagonistic effects and differences in all the tested items between all the tested strains,of which the strain PL5 had the shortest spawn age,the strain PL3 showed the highest total biological efficiency,and the fructification of the strain PL7 tasted crisp and tender.展开更多
High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than...High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than ±15×10-6/℃.Cr-Si-Ta-Al films were prepared with Ar flow rate and sputtering power fixed at 20 standard-state cubic centimeter per minute(sccm) and 100 W,respectively.The experiment shows that the electrical properties of Cr-SiTa-Al deposition films can meet the specification requirements of 0603 ty...展开更多
In this study, in order to investigate the influence of Cr element on the impact fracture process of ductile Ni-resistant alloyed iron at low temperature, different contents of Cr element were added to ductile Ni-resi...In this study, in order to investigate the influence of Cr element on the impact fracture process of ductile Ni-resistant alloyed iron at low temperature, different contents of Cr element were added to ductile Ni-resistant(DNR) austenitic alloyed iron. The experimental results show that Cr addition can increase the hardness of the DNR alloyed iron, but it has an destructive effect on low-temperature impact properties. Through the analysis of the dynamic load and absorbed energy of samples with different Cr contents in the impact fracture process, and the comparison of the impact fracture process at room and low temperatures, it reveals that Cr addition into the DNR alloyed iron can facilitate the formation of the carbide mixture in Mn23C6 and Cr23C6 with homogeneous and discontinuous distribution. Meanwhile, Cr addition also can improve the the maximum dynamic load and crack initiation energy at low temperature, but has no obvious effect on the yield behavior of the DNR alloyed iron in the impact fracture process. Compared with the impact crack propagation process at room temperature, the metastable propagation energy at low temperature declines significantly with an increase in Cr content. This is because the micro-cracks that caused by the carbides weaken the matrix, resulting in the decline of impact crack propagation resistance. The fracture analysis results also show that the impact fracture mechanism gradually transforms from ductile to brittle with an increase in Cr content at low temperature. It explains that too much Cr addition can lead to brittle fracture even though the austenitic matrix has a good toughness at low temperature.展开更多
To improve the low-temperature performances of Li-ion cells, three types of linear carboxylic ester-based electrolyte, such as EC/EMC/EA(1:1:2, mass ratio), EC/EMC/EP(1:1:2, mass ratio) and EC/EMC/EB(1:1:2,...To improve the low-temperature performances of Li-ion cells, three types of linear carboxylic ester-based electrolyte, such as EC/EMC/EA(1:1:2, mass ratio), EC/EMC/EP(1:1:2, mass ratio) and EC/EMC/EB(1:1:2, mass ratio), were prepared to substitute for industrial electrolyte(EC/EMC/DMC). Then, 18650-type Li Mn2O4-graphite cells(nominal capacity of 1150 mA ·h) were assembled and studied. Results show that the cells containing three types of electrolyte are able to undertake 5C discharging current with above 93% capacity retention at-20 °C. Electrochemical impedance spectra show that the discharge capacity fading of Li-ion cells at low temperature is mainly ascribed to the charge transfer resistance increasing with temperature decreasing. In comparison, the cells containing electrolyte of 1.0 mol/L LiPF6 in EC/EMC/EA(1:1:2, mass ratio) have the highest capacity retention of 90% at-40 °C and 44.41% at-60 °C, due to its lowest charge-transfer resistance.展开更多
This standard specifies the terms and definitions, theory, apparatus, specimens, test procedures, calcu- lation results, apparatus check and test reports, etc. of abrasion resistance at ambient temperature of refracto...This standard specifies the terms and definitions, theory, apparatus, specimens, test procedures, calcu- lation results, apparatus check and test reports, etc. of abrasion resistance at ambient temperature of refractory products.展开更多
Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector...Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.展开更多
Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The exper...Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The experiments were carried out in 100A cell with low melting point electrolyte, the influences of cathodic current density, electrolytic temperature, density differences of bath and liquid aluminum on current efficiency (CE) were studied; when the electrolyte cryolite ratio was 2.5, w(BaC1_2) and w(NaCl) were 48% and 10%, respectively, CE reached 90% and specific energy consumption was 10.97k Wb/kg/kg. Because of the fact that aluminum metal obtained floated on the surface of molten electrolyte, this electrolysis method was then defined as low temperature aluminum floating electrolysis. The results showed that the new low temperature aluminum electrolysis process in the Na_3AlF_6-AlF_3-BaC1_2-NaCl bath system was practical and promising.展开更多
In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of ...In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance.展开更多
We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. Th...We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. The phase change microcapsules(microPCMs) were prepared by an in situ polymerization using sodium dodecyl sulfate(SDS) and polyvinyl alcohol(PVA) as emulsifiers. Surface morphology, particle size, chemical structure, and thermal properties of microPCMs were, respectively, characterized by using scanning electron microscopy(SEM), field emission scanning electron microscopy(FESEM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), and thermal gravimetric analysis(TGA). Low-temperature resistance performances were measured at-15,-30,-45, and-60 ℃ after microPCMs were coated on a cotton fabric by foaming technology. The results showed that spherical microPCMs had 4.4 μm diameter and 100 nm wall thickness. The melting and freezing temperatures and the latent heats of the microPCMs were determined as 28.9 and 29.6 ℃ as well as 110.0 and 115.7 J/g, respectively. Encapsulation of n-alkane mixture achieved 84.9 %. TGA analysis indicated that the microPCMs had good chemical stability below 250 ℃. The results showed that the microencapsulated n-alkane mixture had good energy storage potential. After the addition of 10 % microPCMs, low-temperature resistance duration was prolonged by 126.9%, 145.5%, 128.6%, and 87.5% in environment of-15,-30,-45 and-60 ℃, respectively as compared to pure fabric. Based on the results, phase change microcapsule plays an effective role in lowtemperature protection field for the human body.展开更多
An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃...An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃) nitriding by deformation, and to strengthen Ti6Al4V alloybydispersionat the same time. Specimens of Ti6Al4V alloyweretreated through the process of solid solutionstrengthening-cold deformation-nitriding at 500℃. The white nitriding layeris formed after some time and then kept stable, changing little withthedeformationdegreeand time. The effect of aging on substrate is significant. Surface hardness and substrate hardnessincrease with deformation increasing. The construction was investigated by XRD.The surface nitridesare TiN, Ti2N, Ti4N3-Xand Ti3N1.29,and thenitridesin cross-section are Ti3N1.29and TiN0.3. The wear tests of specimens after nitriding, aging and deformation were carried out,andthetest data show that the nitrided pieces have the best wear resistance.展开更多
Low temperature composite chromizing is a process composed of a plain ion-carbonitriding or ion-nitriding at 550-580℃, followed by a low-temperature chromizing in a salt-bath of 590℃. The microstructure and properti...Low temperature composite chromizing is a process composed of a plain ion-carbonitriding or ion-nitriding at 550-580℃, followed by a low-temperature chromizing in a salt-bath of 590℃. The microstructure and properties of the low temperature composite chromized layer on H13 tool steel were investigated using metallography, X-ray diffraction, microanalysis, hardness and wear tests. It was found that this low temperature process was thermo-dynamically and kinetically possible, and the composite chromized layer on H13 steel, with a thickness of 3-6 μm, consisted of three sub-layers (bands), viz. the outer Cr-rich one, the intermediate (black) one, and the inner, original white layer. After chromizing, the former diffusion layer was thickened. The results of X-ray diffraction showed that the composite chromized layer contained such nitrides and carbides of chromium as CrN, Cr2N, (Cr, Fe)23C6, and (Cr, Fe)7C3, as well as plain α-(Fe, Cr). A high surface microhardness of 1450-1550 HV0.025, which is much higher than that obtained by the conventional ion carbonitriding and ion nitriding, was obtained. In addition, an excellent wear resistance was gained on the composite chromized layer.展开更多
The design of adhesive materials with strong adhesion capacity at low temperatures is a great challenge.Herein,we report a low-molecular-weight supramolecular adhesive that exhibits good adhesion performance to variou...The design of adhesive materials with strong adhesion capacity at low temperatures is a great challenge.Herein,we report a low-molecular-weight supramolecular adhesive that exhibits good adhesion performance to various surfaces at low temperatures(from-18℃ to-80℃).Moreover,this supramolecular adhesive has good adhesion ability in the presence of water.展开更多
A method was presented to prepare aluminide coatings on metals by combining the pack aluminizing with the ball impact process. This technique applied mechanical vibration to a retort, which was loaded with pack-alumin...A method was presented to prepare aluminide coatings on metals by combining the pack aluminizing with the ball impact process. This technique applied mechanical vibration to a retort, which was loaded with pack-aluminizing powder, specimens and alloy balls. Pack aluminizing was carried out with repeated ball impact, which accelerated chemical reactions and atomic diffusion. Aluminide coatings were formed at a relatively lower temperature (below 600 ℃) and in a shorter treatment time, compared with the conventional pack aluminizing. The effects of the operation temperature and the treatment time on the formation of the coatings were analysed. The SEM, EDS and XRD analysis results show that the aluminide coatings appear to be homogeneous, with a high density and free of porosity, and have excellent adherence to the substrate. The coatings mainly consist of Al-rich phases such as η-Fe2Al5, θ-FeAl3 and ?CrAl5. Oxidation resistance was studied by high-temperature tests. The formation mechanism of the Al-coatings was also investigated. This technique provides a new approach for industrial diffusion coatings with great energy and time savings.展开更多
The influence of processing temperatures on the surface characteristics of AISI 204Cu austenitic stainless steel was investigated during a low temperature plasma nitrocarburizing.The resultant layer was a dual-layer s...The influence of processing temperatures on the surface characteristics of AISI 204Cu austenitic stainless steel was investigated during a low temperature plasma nitrocarburizing.The resultant layer was a dual-layer structure,which comprises a N-enriched layer on the top of C-enriched layer.The surface hardness and the layer thickness increase up to about HV 0.05 1000 and 20μm with increasing temperature.The specimen treated at 400°C shows a much enhanced corrosion resistance compared to the untreated steel.A loss in corrosion resistance was observed for specimens treated at temperatures above 430°C due to the formation of Cr2N.展开更多
基金Supported by Basic Research Fund of Hebei Academy of Agriculture and Forestry Sciences(2024020202)"Three-Three-Three"Talent Project of Hebei Province(C20231157)+2 种基金Science and Technology Innovation Project of Hebei Academy of Agriculture and Forestry Sciences(2022KJCXZX-CGS-7)Hebei Agricultural Industry Research System(HBCT2024170406)Key Research and Development Program of Hebei Province(21326308D-1-2).
文摘[Objectives]To evaluate the cold resistance and semi-lethal temperature of pear cultivars,and provide a theoretical basis for the regional extension and breeding of cold-resistant pear cultivars.[Methods]Nine pear cultivars were used to study the changes in relative conductivity and cell injury rate of pear branches under low temperature stress,and the semi-lethal temperature(LT_(50))of pear branches was analyzed by fitting Logistic equation.[Results]The relative conductivity and cell injury rate of pear branches took on the trend of slow increase,rapid increase,and slow increase the decrease of treatment temperature.The LC_(50) of the nine pear cultivars were as follows:Nanguo pear-33.9℃,Wanyu-32.3℃,Red D Anjou-31.8℃,Jinfeng-31.3℃,Wujiuxiang-29.2℃,20 th Century Pear-29.1℃,Hanxiang-35.1℃,Yuluxiang-27.9℃ and Korla Fragrant Pear-29.2℃.[Conclusions]The semi-lethal temperature could reflect the cold resistance of pear trees,and Wanxiang had better cold resistance.The evaluation of cold resistance and semi-lethal temperature of pear cultivars can provide theoretical basis for regional extension and breeding of cold-resistant pear cultivars.
基金fund for this work was provided by the“Research on Key Technologies of Photosensitive Conductive Silver Paste Based on Domestic Circuit Protection Micro Chip Components”(Project No.BE2020008 and Supporting Author:Chen P).
文摘The poly(epoxy-N-methylaniline)conductive organic carrier was used as the bonding phase of the low-temperature conductive silver paste.Then,this was mixed with different proportions of silver powder to prepare the low-temperature conductive silver paste.Afterwards,the effect of the conductive organic carrier on the properties of the low-temperature conductive silver paste was determined by IR,DMA and SEM.The results revealed that the prepared conductive paste has good conductivity,film-forming performance,printing performance,low-temperature curing performance,and anti-aging performance.When the mass percentage of the bonding phase/conductive phase was 40/60,the lowest volume resistivity of the conductive silver paste was 4.9×10^(−6)Ω⋅cm,and the conductivity was the best.
基金This work was supported by the National Nature Science Foundation of China (No. 19934003) the State Key Project of Fundamental Research of China (No.001CB610604) the Item of Nature Science Research of Anhui (No. 2001kj244).
文摘By measuring M-T curves, ρ-T curves and MR-T curves of the samples under different temperatures, the influence of Dy doping (0.00 ≤ x ≤0.30) on the magnetic and electric properties of La0.7-xDyxSr0.3MnO3 has been studied. The experimental results show that, with the increase of the Dy content, the system undergoes a transition from long range ferromagnetic order to the cluster-spin glass state and further to antiferromagnetic order. For the samples with x=0.20 and 0.30, their magnetic behaviors are abnormal at low temperature, and their resistivities at low temperature have a minimum value. These peculiar phenomena not only come from the lattice effect induced by doping, but also from extra magnetic coupling induced by doping.
文摘With 7 familiar Pleurotus ostreatus strains in Beijing region as the test materials,the randomized block design method was adopted to analyze the antagonistic effects,mycelial growth rate,yield of mushroom at low temperature season,total biological efficiency and agronomic characteristics of fruit bodies.The results showed that there were antagonistic effects and differences in all the tested items between all the tested strains,of which the strain PL5 had the shortest spawn age,the strain PL3 showed the highest total biological efficiency,and the fructification of the strain PL7 tasted crisp and tender.
基金Supported by Science and Technology Committee of Tianjin (No.06YFGPGX08400)Ministry of Science and Technology of China (No.2009GJF20022)Innovation Fund of Tianjin University
文摘High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than ±15×10-6/℃.Cr-Si-Ta-Al films were prepared with Ar flow rate and sputtering power fixed at 20 standard-state cubic centimeter per minute(sccm) and 100 W,respectively.The experiment shows that the electrical properties of Cr-SiTa-Al deposition films can meet the specification requirements of 0603 ty...
基金supported by the National Natural Science Foundation of China(No.51274142)the Natural Science Foundation of Liaoning Province(No.2014028015)the Science&Technology Project of Shenyang City(No.F15-199-1-15)
文摘In this study, in order to investigate the influence of Cr element on the impact fracture process of ductile Ni-resistant alloyed iron at low temperature, different contents of Cr element were added to ductile Ni-resistant(DNR) austenitic alloyed iron. The experimental results show that Cr addition can increase the hardness of the DNR alloyed iron, but it has an destructive effect on low-temperature impact properties. Through the analysis of the dynamic load and absorbed energy of samples with different Cr contents in the impact fracture process, and the comparison of the impact fracture process at room and low temperatures, it reveals that Cr addition into the DNR alloyed iron can facilitate the formation of the carbide mixture in Mn23C6 and Cr23C6 with homogeneous and discontinuous distribution. Meanwhile, Cr addition also can improve the the maximum dynamic load and crack initiation energy at low temperature, but has no obvious effect on the yield behavior of the DNR alloyed iron in the impact fracture process. Compared with the impact crack propagation process at room temperature, the metastable propagation energy at low temperature declines significantly with an increase in Cr content. This is because the micro-cracks that caused by the carbides weaken the matrix, resulting in the decline of impact crack propagation resistance. The fracture analysis results also show that the impact fracture mechanism gradually transforms from ductile to brittle with an increase in Cr content at low temperature. It explains that too much Cr addition can lead to brittle fracture even though the austenitic matrix has a good toughness at low temperature.
基金Project(2007BAE12B01)supported by the National Key Technology Research and Development Program of ChinaProject(20803095)supported by the National Natural Science Foundation of China
文摘To improve the low-temperature performances of Li-ion cells, three types of linear carboxylic ester-based electrolyte, such as EC/EMC/EA(1:1:2, mass ratio), EC/EMC/EP(1:1:2, mass ratio) and EC/EMC/EB(1:1:2, mass ratio), were prepared to substitute for industrial electrolyte(EC/EMC/DMC). Then, 18650-type Li Mn2O4-graphite cells(nominal capacity of 1150 mA ·h) were assembled and studied. Results show that the cells containing three types of electrolyte are able to undertake 5C discharging current with above 93% capacity retention at-20 °C. Electrochemical impedance spectra show that the discharge capacity fading of Li-ion cells at low temperature is mainly ascribed to the charge transfer resistance increasing with temperature decreasing. In comparison, the cells containing electrolyte of 1.0 mol/L LiPF6 in EC/EMC/EA(1:1:2, mass ratio) have the highest capacity retention of 90% at-40 °C and 44.41% at-60 °C, due to its lowest charge-transfer resistance.
文摘This standard specifies the terms and definitions, theory, apparatus, specimens, test procedures, calcu- lation results, apparatus check and test reports, etc. of abrasion resistance at ambient temperature of refractory products.
文摘Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.
基金The project was financially supported by the National Natural Science Foundation of China! (Gmnt No.59574018)China Postdocto
文摘Multiple regression equations of liquidus temperature, electrical conductivity and bath density of the Na_3AlF_6-AlF_3-BaC1_2-NaCl system were obtained from experiments by using orthogonal regression method. The experiments were carried out in 100A cell with low melting point electrolyte, the influences of cathodic current density, electrolytic temperature, density differences of bath and liquid aluminum on current efficiency (CE) were studied; when the electrolyte cryolite ratio was 2.5, w(BaC1_2) and w(NaCl) were 48% and 10%, respectively, CE reached 90% and specific energy consumption was 10.97k Wb/kg/kg. Because of the fact that aluminum metal obtained floated on the surface of molten electrolyte, this electrolysis method was then defined as low temperature aluminum floating electrolysis. The results showed that the new low temperature aluminum electrolysis process in the Na_3AlF_6-AlF_3-BaC1_2-NaCl bath system was practical and promising.
基金supported by the National Natural Science Foundation of China (No.21206108)Tianjin Municipal Science and Technology Commission (No.14JCYBJC21200)
文摘In this study, we used a simple impregnation method to prepare Fe-Ce-O<sub> x </sub> catalysts and tested them regarding their low-temperature (200-300 °C) selective catalytic reduction (SCR) of NO using NH<sub>3</sub>. We investigated the effects of Fe/Ce molar ratio, the gas hourly space velocity (GHSV), the stability and SO<sub>2</sub>/H<sub>2</sub>O resistance of the catalysts. The results showed that the FeCe(1:6)O<sub> x </sub> (Ce/Fe molar ratio is 1:6) catalyst, which has some ordered parallel channels, exhibited good SCR performance. The FeCe(1:6)O<sub> x </sub> catalyst had the highest NO conversion with an activity of 94-99% at temperatures between 200 and 300 °C at a space velocity of 28,800 h<sup>−1</sup>. The NO conversion for the FeCe(1:6)O<sub> x </sub> catalyst also reached 80-98% between 200 and 300 °C at a space velocity of 204,000 h<sup>−1</sup>. In addition, the FeCe(1:6)O<sub> x </sub> catalyst demonstrated good stability in a 10-h SCR reaction at 200-300 °C. Even in the presence of SO<sub>2</sub> and H<sub>2</sub>O, the FeCe(1:6)O<sub> x </sub> catalyst exhibited good SCR performance.
基金Funded by Tianjin Research Program of Application Foundation and Advanced Technology(No.15JCZDJC38400)the National Natural Science Foundation of China(Nos.51303131 and 51303128)
文摘We investigated synthesis and characterization of melamine-urea-formaldehyde(MUF) microcapsules containing n-alkane mixture as phase change core material for thermal energy storage and low-temperature protection. The phase change microcapsules(microPCMs) were prepared by an in situ polymerization using sodium dodecyl sulfate(SDS) and polyvinyl alcohol(PVA) as emulsifiers. Surface morphology, particle size, chemical structure, and thermal properties of microPCMs were, respectively, characterized by using scanning electron microscopy(SEM), field emission scanning electron microscopy(FESEM), Fourier transform infrared spectroscopy(FT-IR), differential scanning calorimetry(DSC), and thermal gravimetric analysis(TGA). Low-temperature resistance performances were measured at-15,-30,-45, and-60 ℃ after microPCMs were coated on a cotton fabric by foaming technology. The results showed that spherical microPCMs had 4.4 μm diameter and 100 nm wall thickness. The melting and freezing temperatures and the latent heats of the microPCMs were determined as 28.9 and 29.6 ℃ as well as 110.0 and 115.7 J/g, respectively. Encapsulation of n-alkane mixture achieved 84.9 %. TGA analysis indicated that the microPCMs had good chemical stability below 250 ℃. The results showed that the microencapsulated n-alkane mixture had good energy storage potential. After the addition of 10 % microPCMs, low-temperature resistance duration was prolonged by 126.9%, 145.5%, 128.6%, and 87.5% in environment of-15,-30,-45 and-60 ℃, respectively as compared to pure fabric. Based on the results, phase change microcapsule plays an effective role in lowtemperature protection field for the human body.
基金Projects(51275105,51375106)supported by the National Natural Science Foundation of China
文摘An integrated low-temperature nitriding process was carried out for Ti6Al4V to investigateitseffect on microstructure and properties.The process was designed to enhance the nitriding kinetics in low-temperature(500℃) nitriding by deformation, and to strengthen Ti6Al4V alloybydispersionat the same time. Specimens of Ti6Al4V alloyweretreated through the process of solid solutionstrengthening-cold deformation-nitriding at 500℃. The white nitriding layeris formed after some time and then kept stable, changing little withthedeformationdegreeand time. The effect of aging on substrate is significant. Surface hardness and substrate hardnessincrease with deformation increasing. The construction was investigated by XRD.The surface nitridesare TiN, Ti2N, Ti4N3-Xand Ti3N1.29,and thenitridesin cross-section are Ti3N1.29and TiN0.3. The wear tests of specimens after nitriding, aging and deformation were carried out,andthetest data show that the nitrided pieces have the best wear resistance.
基金This work was financially supported by the Research Fund for the Doctoral Program of High Education of China(No.20030561001)by the National Natural Science Foundation of China(Grant No.50371028).
文摘Low temperature composite chromizing is a process composed of a plain ion-carbonitriding or ion-nitriding at 550-580℃, followed by a low-temperature chromizing in a salt-bath of 590℃. The microstructure and properties of the low temperature composite chromized layer on H13 tool steel were investigated using metallography, X-ray diffraction, microanalysis, hardness and wear tests. It was found that this low temperature process was thermo-dynamically and kinetically possible, and the composite chromized layer on H13 steel, with a thickness of 3-6 μm, consisted of three sub-layers (bands), viz. the outer Cr-rich one, the intermediate (black) one, and the inner, original white layer. After chromizing, the former diffusion layer was thickened. The results of X-ray diffraction showed that the composite chromized layer contained such nitrides and carbides of chromium as CrN, Cr2N, (Cr, Fe)23C6, and (Cr, Fe)7C3, as well as plain α-(Fe, Cr). A high surface microhardness of 1450-1550 HV0.025, which is much higher than that obtained by the conventional ion carbonitriding and ion nitriding, was obtained. In addition, an excellent wear resistance was gained on the composite chromized layer.
基金the Outstanding Youth Scientist Foundation of Hunan Province(No.2021JJ10010)the Huxiang Young Talent Program from Hunan Province(No.2018RS3036)+1 种基金the Fundamental Research Funds for the Central Universities from Hunan Universitysupported by the Hunan Provincial Innovation Foundation for Postgraduate(No.CX20200446)。
文摘The design of adhesive materials with strong adhesion capacity at low temperatures is a great challenge.Herein,we report a low-molecular-weight supramolecular adhesive that exhibits good adhesion performance to various surfaces at low temperatures(from-18℃ to-80℃).Moreover,this supramolecular adhesive has good adhesion ability in the presence of water.
基金Project(50271010) supported by the National Natural Science Foundation of China
文摘A method was presented to prepare aluminide coatings on metals by combining the pack aluminizing with the ball impact process. This technique applied mechanical vibration to a retort, which was loaded with pack-aluminizing powder, specimens and alloy balls. Pack aluminizing was carried out with repeated ball impact, which accelerated chemical reactions and atomic diffusion. Aluminide coatings were formed at a relatively lower temperature (below 600 ℃) and in a shorter treatment time, compared with the conventional pack aluminizing. The effects of the operation temperature and the treatment time on the formation of the coatings were analysed. The SEM, EDS and XRD analysis results show that the aluminide coatings appear to be homogeneous, with a high density and free of porosity, and have excellent adherence to the substrate. The coatings mainly consist of Al-rich phases such as η-Fe2Al5, θ-FeAl3 and ?CrAl5. Oxidation resistance was studied by high-temperature tests. The formation mechanism of the Al-coatings was also investigated. This technique provides a new approach for industrial diffusion coatings with great energy and time savings.
基金Project(2011AA192)supported by Dongeui University,Korea
文摘The influence of processing temperatures on the surface characteristics of AISI 204Cu austenitic stainless steel was investigated during a low temperature plasma nitrocarburizing.The resultant layer was a dual-layer structure,which comprises a N-enriched layer on the top of C-enriched layer.The surface hardness and the layer thickness increase up to about HV 0.05 1000 and 20μm with increasing temperature.The specimen treated at 400°C shows a much enhanced corrosion resistance compared to the untreated steel.A loss in corrosion resistance was observed for specimens treated at temperatures above 430°C due to the formation of Cr2N.