Wastewater with high NH_4^+-N is difficult to treat by traditional methods.So in this paper,a wild strain of photosynthetic bacteria was used for high NH_4^+-N wastewater treatment together with biomass recovery.Isola...Wastewater with high NH_4^+-N is difficult to treat by traditional methods.So in this paper,a wild strain of photosynthetic bacteria was used for high NH_4^+-N wastewater treatment together with biomass recovery.Isolation,identification,and characterization of the microorganism were carried out.The strain was inoculated to the biological wastewater treatment unit.The impacts of important factors were examined,including temperature,dissolved oxygen,and light intensity.Results showed that photosynthetic bacteria could effectively treat high NH_4^+-N wastewater.For wastewater with NH_4^+-N of 2300 mg·L^(-1),COD/N=1.0,98.3%of COD was removed,and cell concentration increased by 43 times.The optimal conditions for the strain's cell growth and wastewater treatment were 30℃,dissolved oxygen of 0.5-1.5 mg·L^(-1) and a light intensity of 4000 lx.Photosynthetic bacteria could bear a lower C/N ratio than bacteria in a traditional wastewater treatment process,but the NH_4^+-N removal was only 20%-40%because small molecule carbon source was used prior to NH_4^+-N.Also,the use of photosynthetic bacteria in chicken manure wastewater containing NH4+-N about 7000 mg·L^(-1) proved that photosynthetic bacteria could remove NH_4^+-N in a real case,finally,83.2%of NH_4^+-N was removed and 66.3%of COD was removed.展开更多
[Objective] The aim was to research Chlorella properties in removing ni- trogen and phosphorus from wastewater. [Method] The effects of initial NH4+-N and total P concentrations, N-to-P ratios, lightJdarkness ratios ...[Objective] The aim was to research Chlorella properties in removing ni- trogen and phosphorus from wastewater. [Method] The effects of initial NH4+-N and total P concentrations, N-to-P ratios, lightJdarkness ratios and pH on the removal of NH4+-N and total P were evaluated. [Result] The results showed that Chlorella al- most removed NH4+-N and total P at 100% as initial concentrations of NH4+-N and total P were no more than 55 and 7 mg/L, respectively, whereas the removal ratio of NH4+-N decreased to 90% with initial NH4+-N concentration coming up to 75 mg/L. With N-to-P ratios of 5:1, 10:1 and 25:1, Chlorella completely removed NH4+-N within 4 d, while the removal ratio of total P reached almost 100% within 7 d, with different N-to-P ratios. With L./D ratios of 24 h: 0 h and 12 h: 12 h as well as the initial concentrations of NH4+-N at 30 mg/L and total P at 7 mg/L, the removing ra- tio of NH4+-N and total P almost achieved 100% by Chlorella, and the removing ra- tio under L/D ratio of 24 h:0 h proved much faster. The optimal pH range for Chlorella to remove NH4+-N and total P was 7-8. [Conclusion] The research pro- vides references for wastewater treatment in biological way and highly-efficient and environment-friendly treatment in future.展开更多
Water pollution caused by ammonia nitrogen is of major concern in many parts of the world due to the danger it poses to the environment and human health.This study focuses on the development of an inexpensive and envi...Water pollution caused by ammonia nitrogen is of major concern in many parts of the world due to the danger it poses to the environment and human health.This study focuses on the development of an inexpensive and environmental adsorbent by means of modified corncob.The objective of this paper was to investigate the adsorption behavior of NH^+_4-N from wastewater by modified corncob.Corncob was modified with KMn O_4.The physico-chemical properties of modified corncob were characterized by fourier transform infrared spectroscopy(FTIR)and scanning electron microscopy(SEM).It was found that the adsorption capacity of corncob was improved significantly after modification with KMn O_4.The p H significantly affected the adsorption efficiency of modified corncob to NH^+_4-N.The best p H value of corncob adsorbing NH^+_4-N was 7.The coexistence of Na^+had a significant effect on the adsorption of NH^+_4-N.The adsorption process of modified corncob to NH^+_4-N followed the pseudo-first order kinetic model.Langmuir model could well simulate the adsorption behavior of NH^+_4-N on modified corncob.The maximum adsorption capacity of NH^+_4-N on modified corncob can reach 4.85 mg/g.The adsorption process of NH^+_4-N was monolayer adsorption.Moreover,modified corncob adsorbed NH^+_4-N was fertilizer conservation especially for nitrogen.The utilization of modified corncob with NH^+_4-N adsorption in the farmland could promote the gradual release of nutrients,thus providing nutrients for plant growth.It was proposed that if combined with biological method,the amount of removed NH^+_4-N from wastewater could be increased significantly.展开更多
It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that ...It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that use the buffering effect of the composite phosphate and employ PO4^3- and HPO4^2- as phosphorus sources, pH was controlled by properly changing the proportion of PO4^3- to HPO4^2-. The influences of pH, material proportion and different addition modes of magnesium on NH4^+-N removal efficiency were investigated, with NH4^3--N concentration in influent being 200 mg/L. It showed that the ratio of HPO4^2- : PO4^3- was concerned with phosphorus and NH4^+-N removal. Under the condition that the total amount of phosphate is definite, the removal efficiency of NH4^+-N decreased with the enhancement of HPO4^2- concentration, while the efficiency of phosphorus increased. When increasing PO4^3- concentration, it benefited the removal of NH4^+-N, but the remaining phosphorus was high. The results showed that NH4^+-N concentration decreased from the initial 200 mg/L to 39.14 mg/L with the remaining PO4^3- at 5.14 mg/L if the ratio of HPO4^2- : PO4^3- remained at 1:3.展开更多
基金Supported by the National Natural Science Foundation of China(51278489)
文摘Wastewater with high NH_4^+-N is difficult to treat by traditional methods.So in this paper,a wild strain of photosynthetic bacteria was used for high NH_4^+-N wastewater treatment together with biomass recovery.Isolation,identification,and characterization of the microorganism were carried out.The strain was inoculated to the biological wastewater treatment unit.The impacts of important factors were examined,including temperature,dissolved oxygen,and light intensity.Results showed that photosynthetic bacteria could effectively treat high NH_4^+-N wastewater.For wastewater with NH_4^+-N of 2300 mg·L^(-1),COD/N=1.0,98.3%of COD was removed,and cell concentration increased by 43 times.The optimal conditions for the strain's cell growth and wastewater treatment were 30℃,dissolved oxygen of 0.5-1.5 mg·L^(-1) and a light intensity of 4000 lx.Photosynthetic bacteria could bear a lower C/N ratio than bacteria in a traditional wastewater treatment process,but the NH_4^+-N removal was only 20%-40%because small molecule carbon source was used prior to NH_4^+-N.Also,the use of photosynthetic bacteria in chicken manure wastewater containing NH4+-N about 7000 mg·L^(-1) proved that photosynthetic bacteria could remove NH_4^+-N in a real case,finally,83.2%of NH_4^+-N was removed and 66.3%of COD was removed.
基金Supported by Shenzhen Exclusive Funds for Developing Emerging Industries of Strategic Importance(CXZZ20120618111150009)~~
文摘[Objective] The aim was to research Chlorella properties in removing ni- trogen and phosphorus from wastewater. [Method] The effects of initial NH4+-N and total P concentrations, N-to-P ratios, lightJdarkness ratios and pH on the removal of NH4+-N and total P were evaluated. [Result] The results showed that Chlorella al- most removed NH4+-N and total P at 100% as initial concentrations of NH4+-N and total P were no more than 55 and 7 mg/L, respectively, whereas the removal ratio of NH4+-N decreased to 90% with initial NH4+-N concentration coming up to 75 mg/L. With N-to-P ratios of 5:1, 10:1 and 25:1, Chlorella completely removed NH4+-N within 4 d, while the removal ratio of total P reached almost 100% within 7 d, with different N-to-P ratios. With L./D ratios of 24 h: 0 h and 12 h: 12 h as well as the initial concentrations of NH4+-N at 30 mg/L and total P at 7 mg/L, the removing ra- tio of NH4+-N and total P almost achieved 100% by Chlorella, and the removing ra- tio under L/D ratio of 24 h:0 h proved much faster. The optimal pH range for Chlorella to remove NH4+-N and total P was 7-8. [Conclusion] The research pro- vides references for wastewater treatment in biological way and highly-efficient and environment-friendly treatment in future.
文摘Water pollution caused by ammonia nitrogen is of major concern in many parts of the world due to the danger it poses to the environment and human health.This study focuses on the development of an inexpensive and environmental adsorbent by means of modified corncob.The objective of this paper was to investigate the adsorption behavior of NH^+_4-N from wastewater by modified corncob.Corncob was modified with KMn O_4.The physico-chemical properties of modified corncob were characterized by fourier transform infrared spectroscopy(FTIR)and scanning electron microscopy(SEM).It was found that the adsorption capacity of corncob was improved significantly after modification with KMn O_4.The p H significantly affected the adsorption efficiency of modified corncob to NH^+_4-N.The best p H value of corncob adsorbing NH^+_4-N was 7.The coexistence of Na^+had a significant effect on the adsorption of NH^+_4-N.The adsorption process of modified corncob to NH^+_4-N followed the pseudo-first order kinetic model.Langmuir model could well simulate the adsorption behavior of NH^+_4-N on modified corncob.The maximum adsorption capacity of NH^+_4-N on modified corncob can reach 4.85 mg/g.The adsorption process of NH^+_4-N was monolayer adsorption.Moreover,modified corncob adsorbed NH^+_4-N was fertilizer conservation especially for nitrogen.The utilization of modified corncob with NH^+_4-N adsorption in the farmland could promote the gradual release of nutrients,thus providing nutrients for plant growth.It was proposed that if combined with biological method,the amount of removed NH^+_4-N from wastewater could be increased significantly.
文摘It is necessary to adjust reaction pH when a single kind of PO4^3- is used as phosphorus source to remove NH4^+- N in a chemical precipitation process. However, this tedious step could be avoided in experiments that use the buffering effect of the composite phosphate and employ PO4^3- and HPO4^2- as phosphorus sources, pH was controlled by properly changing the proportion of PO4^3- to HPO4^2-. The influences of pH, material proportion and different addition modes of magnesium on NH4^+-N removal efficiency were investigated, with NH4^3--N concentration in influent being 200 mg/L. It showed that the ratio of HPO4^2- : PO4^3- was concerned with phosphorus and NH4^+-N removal. Under the condition that the total amount of phosphate is definite, the removal efficiency of NH4^+-N decreased with the enhancement of HPO4^2- concentration, while the efficiency of phosphorus increased. When increasing PO4^3- concentration, it benefited the removal of NH4^+-N, but the remaining phosphorus was high. The results showed that NH4^+-N concentration decreased from the initial 200 mg/L to 39.14 mg/L with the remaining PO4^3- at 5.14 mg/L if the ratio of HPO4^2- : PO4^3- remained at 1:3.