期刊文献+
共找到252,902篇文章
< 1 2 250 >
每页显示 20 50 100
Comparative study of low NO_(x) combustion optimization of a coal-fired utility boiler based on OBLPSO and GOBLPSO
1
作者 Li Qingwei Liu Zhi He Qifeng 《Journal of Southeast University(English Edition)》 EI CAS 2021年第3期285-289,共5页
To reduce NO_(x) emissions of coal-fired power plant boilers,this study introduced particle swarm optimization employing opposition-based learning(OBLPSO)and particle swarm optimization employing generalized oppositio... To reduce NO_(x) emissions of coal-fired power plant boilers,this study introduced particle swarm optimization employing opposition-based learning(OBLPSO)and particle swarm optimization employing generalized opposition-based learning(GOBLPSO)to a low NO_(x) combustion optimization area.Thermal adjustment tests under different ground conditions,variable oxygen conditions,variable operation modes of coal pulverizer conditions,and variable first air pressure conditions were carried out on a 660 MW boiler to obtain samples of combustion optimization.The adaptability of PSO,differential evolution algorithm(DE),OBLPSO,and GOBLPSO was compared and analyzed.Results of 51 times independently optimized experiments show that PSO is better than DE,while the performance of the GOBLPSO algorithm is generally better than that of the PSO and OBLPSO.The median-optimized NO_(x) emission by GOBLPSO is up to 15.8 mg/m^(3) lower than that obtained by PSO.The generalized opposition-based learning can effectively utilize the information of the current search space and enhance the adaptability of PSO to the low NO_(x) combustion optimization of the studied boiler. 展开更多
关键词 no_(x) emissions combustion optimization particle swarm optimization opposition-based learning generalized opposition-based learning
下载PDF
A numerical study of accelerated moderate or intense low-oxygen dilution(MILD)combustion stability for methane in a lab-scale furnace by off-stoichiometric combustion technology 被引量:1
2
作者 Mengqian Xie Fangqin Dai Yaojie Tu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期108-118,共11页
Moderate or intense lowoxygen dilution(MILD)combustion has become a promising lowNOX emission technology,while the delayed mixing of reactants and slower oxidation rate could potentially cause ignition instability in ... Moderate or intense lowoxygen dilution(MILD)combustion has become a promising lowNOX emission technology,while the delayed mixing of reactants and slower oxidation rate could potentially cause ignition instability in some scenarios.This paper proposes a new idea for enhancing the ignition stability for methane MILD combustion by combining with offstoichiometric combustion(OSC),and its performances have been numerically assessed through a comparison against the original MILD combustion burner.The results reveal although nonpremixed pattern has the lowest NO emission,it suffers from a larger liftoff distance,thus less ignition stability.Contrarily,both partiallypremixed and fully premixed patterns exhibit excellent ignition stability.Among the considered OSC conditions,the pattern of Inner ultrarich and Outer lean produces the lowest NO emission while maintains a high ignition stability.Furthermore,the enhancement of the combustion stability by implementing OSC to the original MILD combustion burner is shown by comparing the operational range of furnace wall temperature(Tf),CO and NO emissions,as well as the evolution of chemical flame.The comparison reveals that OSC can extend the lowest operational Tf from 900 K to 800 K.More importantly,OSC can significantly improve the ignition stability in the whole range of Tf as compared to the original MILD combustion burner. 展开更多
关键词 MILD combustion Off-stoichiometric combustion no emission Ignition instability Burner design
下载PDF
Synthesis of Neodymium-Doped Yttrium Aluminum Garnet (Nd∶YAG) Nano-Sized Powders by Low Temperature Combustion 被引量:8
3
作者 张华山 苏春辉 +1 位作者 韩辉 侯朝霞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期304-308,共5页
The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ... The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal. 展开更多
关键词 laser ceramics neodymium-doped yttrium aluminum garnet (Nd∶YAG) nano-sized powders low temperature combustion synthesis (LCS)
下载PDF
A novel PdNi/Al_2O_3 catalyst prepared by galvanic deposition for low temperature methane combustion 被引量:8
4
作者 Xiqiang Pan Yibo Zhang +1 位作者 Zhenzhen Miao Xiangguang Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第4期610-616,共7页
Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) p... Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst. 展开更多
关键词 METHANE catalytic combustion PALLADIUM PD/AL2O3 galvanic replace reaction
下载PDF
Preparation of Non-Grinding Long Afterglow SrAl_2O_4:Eu^(2+), Dy^(3+) Material by Microwave Combustion Method 被引量:13
5
作者 杜海燕 李庚申 孙家跃 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第1期19-22,共4页
The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting s... The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting system. XRD analysis showed that the powders were nearly pure SrAl2O4 phase with few other phases, and the size of the grain was 41.1 nm. Fluoreseenee speetrum results indieated that there were 2 exeitation peaks loeated at 345 and 400 nm, and the emission peak loeated at 516 nm, afterglow lasted up to 30 min or more. The mierowave eombustion method has advantages of less time, low temperature and no grinding process, and the material made by the method has good luminescent property. 展开更多
关键词 microwave combustion non-grinding long afterglow SrAl2O4 Eu^2 Dy^3 rare earths
下载PDF
Characterization of Pr-CeO_2 Nano-crystallites Prepared by Low-temperature Combustion&Hydrothermal Synthesis 被引量:3
6
作者 ZHU Zhen-Feng WANG Bao-Li MA Jian-Zhong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第10期1270-1274,共5页
Pr-CeO2 Nano-crystalline red pigments were prepared by low-temperature combustion with a later hydrothermal treatment using Ce(NO3)3·6H2O and Pr6O11 as raw materials. The phase composition, coloring mechanism a... Pr-CeO2 Nano-crystalline red pigments were prepared by low-temperature combustion with a later hydrothermal treatment using Ce(NO3)3·6H2O and Pr6O11 as raw materials. The phase composition, coloring mechanism and morphology of pigments were analyzed by XRD, SEM, EDS and XPS. Results showed that Pr-CeO2 solid solution with a fluorite structure was obtained by the diffusion of Pr^+3 into CeO2 crystal lattice during the synthesis process. XPS analysis indicated that Pr^+3 substitutes Ce^+4 in CeO2 and is compensated by oxygen vacancies. Compared with low-temperature combustion synthesis, the Pr-CeO2 pigments prepared with a subsequent hydrothermal treatment have an average grain size of about 16.70 nm, and the crystallinity and red tonality are improved. 展开更多
关键词 low-temperature combustion hydrothermal treatment Pr-CeO2 pigments nano-crystalline
下载PDF
The role of graphene coating on cordierite-supported Pd monolithic catalysts for low-temperature combustion of toluene 被引量:10
7
作者 Wen Li Hongqi Ye +3 位作者 Gonggang Liu Hongchao Ji Yonghua Zhou Kai Han 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第5期946-954,共9页
In the present work,a Pd/graphene/cordierite(Pd/Gr/Cor)composite was prepared as a monolithic catalyst for low-temperature combustion of toluene.We mainly focused on understanding the role of graphene coating through ... In the present work,a Pd/graphene/cordierite(Pd/Gr/Cor)composite was prepared as a monolithic catalyst for low-temperature combustion of toluene.We mainly focused on understanding the role of graphene coating through investigation of catalytic performance and adsorption behavior of the composite.Compared with the traditional Pd/Cor catalyst without graphene coating,Pd/Gr/Cor catalyst delivered much higher activity and stability for toluene catalytic combustion in both dry and moist conditions.Transmission electron microscopy(TEM)and hydrophobic characterizations indicated that graphene coating can considerably improve the dispersity of Pd nanoparticles and enhance the hydrophobicity of the cordierite support.The adsorption behavior of the above two catalysts,including adsorption isothermal,adsorption kinetics,and adsorption thermodynamics were carefully investigated.The simulation results indicated that a large amount of toluene was adsorbed on graphene surface through relatively weak interaction,whereas only a relatively small amount of toluene was adsorbed on Pd surface with strong affinity.The adsorption thermal calculation indicated that the adsorption of toluene on graphene was a process with reduced entropy,indicating highly-ordered assembly of toluene molecular on graphene.It is the significant concentration and affinity gap between graphene and Pd that ensures a simultaneously and rapid transfer of toluene during the reaction process. 展开更多
关键词 Graphene coating PALLADIUM Catalytic combustion STEAM Adsorption
下载PDF
Synthesis and characterization of SrCe_(0.95)Y_(0.05)O_(3-δ) nano powders by low temperature combustion 被引量:2
8
作者 MENG Bo TAN Xiaoyao +1 位作者 ZHANG Baoyan YANG Naitao 《Rare Metals》 SCIE EI CAS CSCD 2006年第1期79-83,共5页
Nanosized SrCe0.95Y0.05O3-δ powders with homogeneous composition were synthesized by the low temperature combustion process based on the Pechini method. A polymeric precursor sol was formed by using citric acid and e... Nanosized SrCe0.95Y0.05O3-δ powders with homogeneous composition were synthesized by the low temperature combustion process based on the Pechini method. A polymeric precursor sol was formed by using citric acid and ethylene glycol as the chelating agents of metal ions. The perovskite-type SrCe0.95Y0.05O3-δpowders with uniform shape and smaller than 25 nm in size were obtained through the combustion of the polymeric precursor sol at the existence of nitric acid and ammonium hydroxide. It was found that modulating the quantifies of nitric acid and ammonium hydroxide could control the particle size, and the quantities of residue carbonate ions were also affected by the quantifies of citric acid and ethylene glycol. 展开更多
关键词 inorganic nonmetal material perovskite-type oxides SrCe0.95Y0.05O3-δ combustion synthesis
下载PDF
New Problems of Boiler Corrosion after Coupling Combustion of Coal and Biomass and Anti-Corrosion Technologies
9
作者 Lei Wang Ziran Ma +4 位作者 Chunlin Zhao Jiali Zhou Hongyan Wang Ge Li Ningling Zhou 《Journal of Renewable Materials》 EI CAS 2024年第4期799-814,共16页
This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon redu... This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed. 展开更多
关键词 BIOMASS coupled combustion corrosion mechanism anti-corrosion measures
下载PDF
Effects of nano-metal oxide additives on ignition and combustion properties of MICs-boron rich fuels
10
作者 Liang Hu Danyang Liu +5 位作者 Kun Yang Jianying Lu Chao Shi Jianyu Wang Xinhang Liu Lang Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期157-167,共11页
Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit ... Boron has been considered a promising powdered metal fuel for enhancing composite propellants'energy output due to its high energy density.However,the high ignition temperature and low combustion efficiency limit the application of boron powder due to the high boiling point of the boron oxide layer.Much research is ongoing to overcome these shortcomings,and one potential approach is to introduce a small quantity of metal oxide additives to promote the reaction of boron.This study prepared boron-rich fuels with 10 wt%of eight nano-metal oxide additives by mechanical ball milling.The effect of metal oxides on the thermo-oxidation,ignition,and combustion properties of boron powder was comprehensively studied by the thermogravimetric analysis(TG),the electrically heated filament setup(T-jump),and the laser-induced combustion experiments.TG experiments at 5 K/min found that Bi_(2)O_(3),MoO_(3),TiO_(2),Fe_(2)O_(3),and CuO can promote thermo-oxidation of boron.Compared to pure boron,Tonsetcan be reduced from 569℃to a minimum of 449℃(B/Bi_(2)O_(3)).Infrared temperature measurement in T-jump tests showed that when heated by an electric heating wire at rates from 1000 K/s to 25000 K/s,the ignition temperatures of B/Bi_(2)O_(3) are the lowest,even lower than the melting point of boron oxide.Ignition images and SEM for the products further showed that the high heating rate is beneficial to the rapid reaction of boron powder in the single-particle combustion state.Fuels(B/Bi_(2)O_(3),B/MoO_(3),and B/CuO)were mixed with the oxidant AP and ignited by laser to study the combustion performance.The results showed that B/CuO/AP has the largest flame area,the highest BO_(2) characteristic spectral intensity,and the largest burn rate for powder lines.To combine the advantages of CuO and Bi_(2)O_(3),binary metal oxide(CBO,mass ratio of 3:1)was prepared and the test results showed that CBO can very well improve both ignition and combustion properties of boron.Especially B/CBO/AP has the highest burn rate compared with all fuels containing other additives.It was found that multi-component metal-oxide additive can more synergistically improve the reaction characteristics of boron powder than unary additive.These findings contribute to the development of boron-rich fuels and their application in propellants. 展开更多
关键词 Boron-rich fuel Mechanical ball milling Electrically heated filament Laser-induced combustion
下载PDF
Simulation of gas-solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions
11
作者 Kaixuan Gao Xiwei Ke +5 位作者 Bingjun Du Zhenchuan Wang Yan Jin Zhong Huang Yanhong Li Xuemin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期9-19,共11页
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention... Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler. 展开更多
关键词 Circulating fluidized bed Pure-oxygen combustion Gas-solid flow characteristics SIMULATION CO_(2)capture
下载PDF
Screening non-noble metal oxides to boost the low-temperature combustion of polyethylene waste in air 被引量:1
12
作者 Xinyao Sun Liu Zhao +5 位作者 Xu Hou Hao Zhou Huimin Qiao Chenggong Song Jing Huang Enxian Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期155-162,共8页
Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal ... Globally,the efficient utilization of polymer wastes is one of the most important issues for current sustainable development topics.Herein,a green and efficient low-temperature combustion approach is proposed to deal with polymer wastes and recover heat energy,simultaneously alleviating the environment and energy crisis.Non-noble metal oxides(Al_(2)O_(3),Fe_(2)O_(3),NiO_(2),ZrO_(2),La_(2)O_(3)and CeO_(2)) were prepared,characterized and screened to boost the low-temperature combustion of polyethylene waste at 300℃ in air.The mass change,heat release and CO_(x) formation were studied in details and employed to evaluate the combustion rate and efficiency.It was found that CeO_(2)significantly enhanced the combustion rate and efficiency,which was respectively 2 and 7 times that of non-catalytic case.An interesting phenomenon was observed that the catalytic performance of CeO_(2) in polyethylene low-temperature combustion was significantly improved by the 7-day storage in the room environment or water treatment.XPS analysis confirmed the co-existence of Ce^(3+) and Ce^(4+) in CeO_(2),and the 7-day storage and water treatment promoted the amount of Ce^(3+),which facilitated the formation of the oxygen vacancies.That may be the reason why CeO_(2) exhibited excellent catalytic performance in polyethylene low-temperature combustion. 展开更多
关键词 Polymer wastes low-temperature combustion Metal oxides CeO_(2)
下载PDF
Numerical Simulation of Combustion in 660MWTangentially Fired Pulverized Coal Boiler on Ultra-Low Load Operation
13
作者 Xuehui Jing Junchen Guo Zhiyun Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期919-937,共19页
In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on... In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease. 展开更多
关键词 Boiler combustion deep peak shaving ultra-low load numerical simulation
下载PDF
Numerical Study of Air Nozzles on Mild Combustion for Application to Forward Flow Furnace 被引量:1
14
作者 Liu Bo Wang Yuanhua Xu Hong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第1期108-122,共15页
An attempt was made to extend mild combustion to forward flow furnace, such as the refinery and petrochemical tube furnace. Three dimensional numerical simulation was carried out to study the performance of this furna... An attempt was made to extend mild combustion to forward flow furnace, such as the refinery and petrochemical tube furnace. Three dimensional numerical simulation was carried out to study the performance of this furnace. The Eddy Dissipation Concept(EDC) model coupled with the reaction mechanism DRM-19 was used. The prediction showed a good agreement with the measurement. The effect of air nozzle circle(D), air nozzle diameter(d), air nozzle number(N), and air preheating temperature(Tair) on the flow, temperature and species fields, and the CO and NO emissions was investigated. The results indicate that there are four zones in the furnace, viz.: a central jet zone, an ignition zone, a combustion reaction zone, and a flue gas zone, according to the distribution profiles of H_2 CO and OH. The central jet entrains more flue gas in the furnace upstream with an increasing D while the effect of D is negligible in the downstream. The air jet momentum increases with a decreasing d or an increasing Tair, and entrains more flue gas. The effect of N is mainly identified near the burner exit. More heat is absorbed in the radiant section and less heat is discharged to the atmosphere with a decreasing d and an increasing N as evidenced by the flue gas temperature. The CO and NO emissions are less than 50 μL/L and 10 μL/L, respectively, in most of conditions. 展开更多
关键词 mild combustion refinery and petrochemical tube furnace forward flow configuration low pollutant emissions CFD
下载PDF
Low Temperature Catalytic Combustion of Ethanol over Pt/γ-Al_2O_3/Ce_xZr_(1-x)O_2 Honeycomb Catalysts
15
作者 WANG Jian-li LIU Zhi-min CAO Hong-yan GONG Mao-chu CHEN Yong-dong CHEN Yao-qiang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2009年第1期81-85,共5页
It has been found that the catalytic activity toward the decomposition of ethanol in a fix bed reactor can be greatly improved by loading Pt on the surface of CexZr1-xO2. In this study, we have investigated the effect... It has been found that the catalytic activity toward the decomposition of ethanol in a fix bed reactor can be greatly improved by loading Pt on the surface of CexZr1-xO2. In this study, we have investigated the effects of different x of Pt/γ-Al2O3/CexZr1-xO2 on the catalytic activity of catalysts. The prepared catalysts were characterized by BET, XRD, and TPR. The BET surface areas of the catalysts decreased with x decreasing. XRD results reveal that deposited Pt dispersed on the CexZr1-xO2 and γ-Al2O3 matrix. The order of catalytic activities is Pt/γ-Al2O3/ Ce0.5Zr0.5O2〉Pt/γ-Al2O3/Ce0.25Zr0.75O2〉Pt/γ-Al2O3/Ce0.75Zr0.26O2〉Pt/γ-Al2O3/CeO2〉Pt/γ-Al2O3/ZrO2. Among the catalysts, the reduction peak area of Pt/γ-Al2O3/Ce0.5Zr0.5O2 is the largest and the oxygen mobility is noticeably promoted, which is in good harmony with the catalytic activity. Incorporation of ZrO2 into the CeO2 lattice considerably decreases the destruction temperature for ethanol. Based on these observations, the mechanistic role of oxygen mobility in the oxidation reaction has been suggested. 展开更多
关键词 ETHAnoL Catalytic combustion Oxygen storage material Monolithic catalyst
下载PDF
Low-NOx Combustion Retrofit and Running Adjustment for 600-MW Utility Boiler with Four-Corner Tangential Firing
16
《Electricity》 2013年第1期40-47,共8页
Low-NOX combustion retrofit is performed by adopting staged combustion technology for a 600 MW utility boiler with a four-corner tangential firing system. The emission data of NOX before and after retrofit are compare... Low-NOX combustion retrofit is performed by adopting staged combustion technology for a 600 MW utility boiler with a four-corner tangential firing system. The emission data of NOX before and after retrofit are compared and analyzed. The test results show that the emission concentration of NOX decreases obviously after the low-NOX retrofit. Additionally, the emission of NOX decreases by nearly 50% when the unit load is higher than 350 MW. It can also be concluded that the emission of NOX is influenced significantly by the amount of SOFA, the damper opening of auxiliary air, the differential pressure between the secondary air windbox and the furnace, and so on. 展开更多
关键词 four-corner tangential firing BOILER low-nox combustion running adjustment
下载PDF
Evaluating Ignition and Combustion Performance with Al-Metal- Organic Frameworks and Nano-Aluminum in HTPB Fuel
17
作者 Sri Nithya Mahottamananda Yash Pal +2 位作者 Yarravarapu Sai Sriram Subha S Djalal Trache 《火炸药学报》 EI CAS CSCD 北大核心 2024年第5期413-421,I0003,共10页
Incorporating aluminum metal-organic frameworks(Al-MOFs)as energetic additives for solid fuels presents a promising avenue for enhancing combustion performance.This study explores the potential benefits of Al-MOF(MIL-... Incorporating aluminum metal-organic frameworks(Al-MOFs)as energetic additives for solid fuels presents a promising avenue for enhancing combustion performance.This study explores the potential benefits of Al-MOF(MIL-53(Al))energetic additive on the combustion performance of hydroxyl-terminated polybutadiene(HTPB)fuel.The HTPB-MOF fuel samples were manufactured using the vacuum-casting technique,followed by a comprehensive evaluation of their ignition and combustion properties using an opposed flow burner(OFB)setup utilizing gaseous oxygen as an oxidizer.To gauge the effectiveness of Al-MOFs as fuel additives,their impact is compared with that of nano-aluminum(nAl),another traditional additive in HTPB fuel.The results indicate that the addition of 15%(mass fraction)nAl into HTPB resulted in the shortest ignition delay time(136 ms),demonstrating improved ignition performance compared to pure HTPB(273 ms).The incorporation of Al-MOF in HTPB also reduced ignition delay times to 227 ms and 189 ms,respectively.Moreover,under high oxidizer mass flux conditions(79—81 kg/(m^(2)s)),HTPB fuel with 15%nAl exhibited a substantial 83.2%increase in regression rate compared to the baseline HTPB fuel,highlighting the positive influence of nAl on combustion behavior.In contrast,HTPB-MOF with a 15%Al-MOF additive showed a 32.7%increase in regression rate compared to pure HTPB.These results suggest that HTPB-nAl outperforms HTPB-MOF in terms of regression rates,indicating a more vigorous and rapid burning behavior. 展开更多
关键词 IGNITION combustion enhancement MOF HTPB regression rate
下载PDF
Microstructure Regulation and Combustion Performance Optimization of PVDF/Al Composite Powder by Non-covalent Functionalized Graphenes
18
作者 易卓然 DENG Haoyuan +2 位作者 QIN Mei 孙一 LUO Guoqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期904-911,共8页
Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the... Graphene prepared by non-covalent modification of sulfonated poly(ether-ether-ketone)(SPG)was combined with polyvinylidene fluoride(PVDF)/Al to improve the PVDF/Al thermal conductivity while reducing the effect of the thermal resistance at the graphene-polymer interface.The regulation rule of SPG with different contents on the energy release of fluorine-containing system was studied.When the content of SPG is 4%,the peak pressure and rise rate of SPG/PVDF/Al composite powder during ignition reach the maximum of 4845.28 kPa and 8683.58 kPa/s.When the content of SPG is 5%,the PVDF/Al composite powder is completely coated by SPG,and the calorific value of the material reachs the maximum of 29.094 kJ/g.Through the design and micro-control of the composite powder,the calorific value of the material can be effectively improved,but the improvement of the mass release rate still depends on the graphene content and surface modification state. 展开更多
关键词 energetic materials PVDF/Al composites graphene modification energy release combustion
下载PDF
Study on the influence of side-blown airflow velocities on plasma and combustion wave generated from fused silica induced by combined pulse laser
19
作者 余昊 蔡继兴 +3 位作者 毛洪涛 王云鹏 李忆 李顺 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期165-176,共12页
This study examines the impact of variations in side-blowing airflow velocity on plasma generation,combustion wave propagation mechanisms,and surface damage in fused silica induced by a combined millisecond-nanosecond... This study examines the impact of variations in side-blowing airflow velocity on plasma generation,combustion wave propagation mechanisms,and surface damage in fused silica induced by a combined millisecond-nanosecond pulsed laser.The airflow rate and pulse delay are the main experimental variables.The evolution of plasma motion was recorded using ultrafast time-resolved optical shadowing.The experimental results demonstrate that the expansion velocities of the plasma and combustion wave are influenced differently by the sideblowing airflow at different airflow rates(0.2 Ma,0.4 Ma,and 0.6 Ma).As the flow rate of the sideblow air stream increases,the initial expansion velocities of the plasma and combustion wave gradually decrease,and the side-blow air stream increasingly suppresses the plasma.It is important to note that the target vapor is always formed and ionized into plasma during the combined pulse laser action.Therefore,the side-blown airflow alone cannot completely clear the plasma.Depending on the delay conditions,the pressure of the side-blowing airflow,the influence of inverse Bremsstrahlung radiation absorption and target surface absorption mechanisms can lead to a phenomenon known as the double combustion waves when using a nanosecond pulse laser.Both simulation and experimental results are consistent,indicating the potential for further exploration of fused silica targets in the laser field. 展开更多
关键词 different airflow speeds PLASMA combustion wave different pulse delay surface damage
下载PDF
Revealing Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles in oxygen/fluorine containing environments:A reactive molecular dynamics study meshing together experimental validation
20
作者 Gang Li Chuande Zhao +2 位作者 Qian Yu Fang Yang Jie Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期313-327,共15页
Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For inst... Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For instance,Al-O reaction is the most common pathway to release limited energy while Al-F reaction has received much attentions to enhance Al combustion efficiency.However,microscopic understanding of the Al-O/Al-F reaction dynamics remains unsolved,which is fundamentally necessary to further improve Al combustion efficiency.In this work,for the first time,Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles(n-Al)in oxygen/fluorine containing environments have been revealed via reactive molecular dynamics(RMD)simulations meshing together combustion experiments.Three RMD simulation systems of Al core/O_(2)/HF,n-Al/O_(2)/HF,and n-Al/O_(2)/CF4 with oxygen percentage ranging from 0%to 100%have been performed.The n-Al combustion in mixed O_(2)/CF_4 environments have been conducted by constant volume combustion experiments.RMD results show that Al-O reaction exhibits kinetic benefits while Al-F reaction owns thermodynamic benefits for n-Al combustion.In n-Al/O_(2)/HF,Al-O reaction gives faster energy release rate than Al-F reaction(1.1 times).The optimal energy release efficiency can be achieved with suitable oxygen percentage of 10%and 50%for n-Al/O_(2)/HF and n-Al/O_(2)/CF_4,respectively.In combustion experiments,90%of oxygen percentage can optimally enhance the peak pressure,pressurization rate and combustion heat.Importantly,Al-O reaction prefers to occur on the surface regions while Al-F reaction prefers to proceed in the interior regions of n-Al,confirming the kinetic/thermodynamic benefits of Al-O/Al-F reactions.The synergistic effect of Al-O/Al-F reaction for greatly enhancing n-Al combustion efficiency is demonstrated at atomicscale,which is beneficial for optimizing the combustion performance of metallic fuel. 展开更多
关键词 Al-O/Al—F reaction Kinetic benefits Thermodynamic benefits Molecular dynamics combustion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部