Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/mar...Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/martensitic steel, designated as China Nuclear Steel- I (CNS- I ), was patterned after T91 steel (modified 9Cr-lMo) for the reactor. The idea of low activation material and microalloy technology was introduced into the design of the steel. The hardening, tempering and transformation behaviour of CNS- I steel was investigated. The steel has advantages in tensile properties at elevated temperature relative to zircaloy that has been widely used as cladding material for conventional light water reactors. CNS- I steel exhibits tensile properties and impact toughness comparable to T91 steel which exhibits availability in the present fission reactors and fast breeder reactor but includes undesired radioactive elements such as molybdenum and niobium.展开更多
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively...This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.展开更多
Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 ...Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure.展开更多
In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding ...In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding parameters are 300 rpm rotational speed,60 mm/min welding speed and10 kn axial force.In stir zone(SZ),austenite dynamic recrystallization induced by plastic deformation and the high cooling rates lead to an obvious refinement of prior austenite grains and martensite laths.The microstructure in SZ contains lath martensite with high dislocation density,a lot of nano-sized MX and M3C phase particles,but almost no M23C6 precipitates.In thermal mechanically affect zone(TMAZ)and heat affect zone(HAZ),refinement of prior austenite and martensitic laths and partial dissolution of M(23)C6 precipitates are obtained at relatively low rotational speed.However,with the increase of heat input,coarsening of martensitic laths,prior austenite grains,and complete dissolution of M23C6 precipitates are achieved.Impact toughness of SZ at-20℃ is slightly lower than that of base material(BM),and exhibits a decreasing trend with the increase of rotational speed.展开更多
A high Si reduced activation ferritic/martensitic(RAFM) steel for nuclear structure application is successfully designed by using Calphad method. The main designed chemical composition is C 0.18–0.22%, Cr10.0–10.5%,...A high Si reduced activation ferritic/martensitic(RAFM) steel for nuclear structure application is successfully designed by using Calphad method. The main designed chemical composition is C 0.18–0.22%, Cr10.0–10.5%, W 1.0–1.5%, Si 1.0–1.3%, V+Ta 0.30–0.45%, and Fe in balance. High Si design brings excellent corrosion resistance, while low activation is advantageous in the nuclear waste processing. The experimental results indicate that the newly designed high Si RAFM steel had full martensitic structure and uniformly distributed fine second phase particles, and exhibited excellent mechanical properties and corrosion resistance. Compared to the P91 steel, this new RAFM steel designed by Calphad method is expected to be a promising candidate used in nuclear power generation, which also provides a new and effective approach to the development of RAFM steel for nuclear application.展开更多
The hot deformation behavior and workability of a new reduced activation ferritic/martensitic steel named SIMP steel for accelerator-driven system were studied. The flow curve and its microstructure were studied at 90...The hot deformation behavior and workability of a new reduced activation ferritic/martensitic steel named SIMP steel for accelerator-driven system were studied. The flow curve and its microstructure were studied at 900-1200 ℃ and strain rate range of 0.001-10 s^-1. The results showed that the deformation behavior of the SIMP steel during hot compression could be manifested by the Zener-Hollomon parameter in an exponent-type equation. Based on the obtained constitutive equation, the calculated flow stresses were in agreement with the experimentally measured ones, and the average activity energies Qdrv and QHw for the initiation of dynamic recrystallization and the peak strain were calculated to be 476.1 kJ/mol and 462.7 kJ/mol, respectively. Furthermore, based on the processing maps and microstructure evolution, the optimum processing condition for the SIMP steel was determined to be 1050-1200 ℃/0.001-0.1s^-1.展开更多
Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain...Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain boundary was measured by scanning transmission electron microscopy with an energy-dispersive spectrometer.The measured Cr concentration at grain boundaries in heat treated zone was 11.7 and 12.8 wt.%in irradiated zone,respectively,which matched well to the calculated results from Mclean and modified Perk model.Equilibrium segregation and RIS of Cr mechanisms were theoretically analysed.The analysis indicates that as temperature rises,equilibrium Cr segregation decreases monotoni-cally,while RIS of Cr has a bell-shape profile,which increases first and then decreases.It is also shown that at low and high temperatures,equilibrium segregation of Cr is higher than that of RIS;at intermediate temperatures,equilibrium Cr segregation is lower than RIS.展开更多
China Low Activation Martensitic (CLAM) steel is being studied to develop the structural materials for a fusion reactor, which has been designed based on the well-known 9Crl.5WVTa steel. The effect of tempering temp...China Low Activation Martensitic (CLAM) steel is being studied to develop the structural materials for a fusion reactor, which has been designed based on the well-known 9Crl.5WVTa steel. The effect of tempering temperature on hardness and micro- structure of CLAM steel was studied. The strength of CLAM steel increased by adding silicon, and the ductility remained con- stant. Conversely, while CLAM steel maintained good ductility with the addition of yttrium, its tensile strengths were greatly degraded. Behaviors under electron irradiation of CLAM steel were examined using the high voltage electron microscope. Electron irradiation at 450℃ formed many voids in CLAM steel with basic composition, whereas CLAM with silicon steel did not change the microstructure significantly.展开更多
Two heats of low activation martensitic (LAM) steels with Ti and Ta (denominated as 9Cr-Ti and 9Cr-Ta), respectively, developed as candidate structure materials for nuclear reactor were characterized. This paper w...Two heats of low activation martensitic (LAM) steels with Ti and Ta (denominated as 9Cr-Ti and 9Cr-Ta), respectively, developed as candidate structure materials for nuclear reactor were characterized. This paper was focused on the effect of titanium on the microstructures and mechanical properties of 9Cr LAM steel in as-received condition (normalized at 950 ℃ for 30 min with water quenching plus tempered at 780 ℃ for 90 min with air cooling). Chemical analysis and microstructure observation were conducted on 9Cr-Ti and 9Cr-Ta with optical microscopy, X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Impact properties and tensile strengths were measured with Charpy impact experiments and tensile tests. The results indicated that 9Cr-Ti and 9Cr-Ta were fully martensitic steels in as-received condition. MX type and M23C6 type precipitates were observed distributing along boundaries of prior austenite grains and martensite laths in 9Cr-Ti.The addition of titanium accelerated the precipitation of TiC and TiN, and produced much finer grains in 9Cr-Ti than 9Cr-Ta at the same normalization temperature. Mechanical properties tests showed the ductile brittle transition temperatures of 9Cr- Ti and 9Cr-Ta were about -90℃ and -85℃, respectively. The ultimate tensile strengths at room temperature and 600℃,were 680 MPa and 365 MPa for 9Cr-Ti, and 660 MPa and 335 MPa for 9Cr-Ta, respectively. The favorite impact toughness and tensile properties of 9Cr-Ti could be attributed to the fine grains in as-received condition.展开更多
Micromechanical behavior of a fine-grained China Low Activation Martensitic (CLAM) steel under nanoindentation was studied in this work. The grain size of the as-prepared O.lTi-CLAM steel is ~5μm and the average diam...Micromechanical behavior of a fine-grained China Low Activation Martensitic (CLAM) steel under nanoindentation was studied in this work. The grain size of the as-prepared O.lTi-CLAM steel is ~5μm and the average diameter of the spherical precipitates is ~5 nm. Both elastic modulus and hardness decrease with increasing contact depth of the nanoindenter, following an exponential decreasing function. The abnormally large contact depths should be resulted from defect concentration under the indenter. The effect of nanosized precipitates on hardness is responsible for the pop-ins occurring in the load-depth curves, corresponding to the blockage of nanosized precipitates to the dislocation movement. Nanosized VC and M23C6precipitates with the volume fractions of 0.32% and 1.21% can be identified, respectively. Different strengthening mechanisms originated from the two types of nanosized precipitates. The blockage of dislocations by VC particles leads to an Orowan strengthening whilst dislocations could cut through theM23C6particles because of the large size of the particles. The strengthening effects originated from the VC and M23C6 precipitates lead to the strength increase of .448 MPa and .254 MPa, respectively.展开更多
The effects of 0.01–0.11 wt.%Zr on the inclusions,microstructure,tensile properties,and impact toughness of the China low activation martensitic steel were investigated.Results showed that Zr exhibits good deoxidatio...The effects of 0.01–0.11 wt.%Zr on the inclusions,microstructure,tensile properties,and impact toughness of the China low activation martensitic steel were investigated.Results showed that Zr exhibits good deoxidation and desulfurization abilities.The scanning electron microscope was used to examine the inclusions in the ingots.The main inclusions in the alloys were Zr–Ta–O,Zr–O,and Zr–O–S.However,some blocky Zr-rich inclusions appeared in Zr-2 and Zr-3 alloys.Typical martensitic structures were observed in the alloys,and average prior austenite grain sizes of 21.1,15.7,and 14.8µm were obtained for Zr-1,Zr-2,and Zr-3 steels,respectively.However,increasing Zr content of the steels deteriorated their mechanical property,owing to the blocky inclusions.The alloy with 0.01%Zr resulted in excellent mechanical properties due to the fine inclusions and the precipitation of Zr3V3C carbides.Values of 576 and 682 MPa were obtained for the yield strength and ultimate tensile strength of Zr-1 alloy,respectively.Furthermore,the ductile–brittle transition temperature of the alloy decreased to−85℃.展开更多
In view of developing novel alloys for applications in supercritical water-cooled reactor fuel cladding and in-core components, a 12%Cr reduced activation ferrite/martensite(RAFM) steel with good corrosion resistance ...In view of developing novel alloys for applications in supercritical water-cooled reactor fuel cladding and in-core components, a 12%Cr reduced activation ferrite/martensite(RAFM) steel with good corrosion resistance and irradiation performance was developed. V and Ta were added to form fine MX type carbonitrides and enhance the high temperature creep rupture strength. Microstructure stability of the steel during long-term aging at 650 C was studied experimentally combined with the simulation of ThermoCalc and DICTRA software. The results show that the precipitates in the steel during long-term aging contain M23C6, MX and Laves phase. M23C6 carbides play a major role in the stabilization of the tempered martensite lath structure by exerting a large Zener pinning force as compared with MX and Laves phase.Adding V and Ta in the steel can not only promote MX precipitation, but also refine M23C6 carbides and thus improve the thermal stability of lath/subgrains, which is beneficial to the improvement of high temperature microstructure stability of the 12%Cr RAFM steel.展开更多
The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to eluc...The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.展开更多
Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and...Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and fabrication of the Chinese helium cooled ceramic breeding TBM (CN HCCB TBM), a type of RAFM steel named CLF-1 was developed and chaxacter^zed at the Southwestern Institute of Physics (SWIP), China. In this paper, the R&D status of CLF-1 steel and the technical issues in using CLF-1 steel to manufacture CN HCCB TBM were reviewed, including the steel manufacture and different welding technologies. Several kinds of property data have been obtained for its application to the design of the ITER TBM.展开更多
With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear ...With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear technology is determined primarily by the behavior of nuclear materials in reactors.Therefore,we studied the radiation performance of the fusion material reduced activation ferritic/martensitic(RAFM)steel.The main novelty of this paper are the statistical analysis of RAFM steel data sets through related statistical analysis and the formula derivation of the gradient descent method(GDM)which combines the gradient descent search strategy of the Convex Optimization Theory to get the best value.Use GDM algorithm to upgrade the annealing stabilization process of simulated annealing algorithm.The yield stress performance of RAFM steel is successfully predicted by the hybrid model which is combined by simulated annealing(SA)with support vector machine(SVM)as the first time.The effect on yield stress by the main physical quantities such as irradiation temperature,irradiation dose and test temperature is also analyzed.The related prediction process is:first,we used the improved annealing algorithm to optimize the SVR model after training the SVR model on a training data set.Next,we established the yield stress prediction model of RAFM steel.The model can predict up to 96%of the data points with the prediction in the test set and the original data point in the 2range.The statistical test analysis shows that under the condition of confidence level=0.01,the calculation results of the regression effect significance analysis pass the T-test.展开更多
基金Item Sponsored by National Basic Research Program(973 Program) of China (2007CB209800)
文摘Ferritic/martensitic steels with Cr of 9%-12% (in mass percent) are favourable candidates for fuel cladding tube and in-core components of supercritical water-cooled reactor. 9Cr-3WVTiTaN low activation ferritic/martensitic steel, designated as China Nuclear Steel- I (CNS- I ), was patterned after T91 steel (modified 9Cr-lMo) for the reactor. The idea of low activation material and microalloy technology was introduced into the design of the steel. The hardening, tempering and transformation behaviour of CNS- I steel was investigated. The steel has advantages in tensile properties at elevated temperature relative to zircaloy that has been widely used as cladding material for conventional light water reactors. CNS- I steel exhibits tensile properties and impact toughness comparable to T91 steel which exhibits availability in the present fission reactors and fast breeder reactor but includes undesired radioactive elements such as molybdenum and niobium.
基金the National Key Research and Development Program of China(No.2016YFB 0300600)the National Natural Science Foundation of China(NSFC)(No.51922026)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.N2002013,N2002005,N2007011)the 111 Project(No.B20029).
文摘This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic(RAFM)steels.High-angle grain boundaries,subgrain boundaries,nano-sized M_(23)C_(6),and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength.M23C6 carbides are easily coarsened under high temperatures,thereby weakening their ability to block dislocations.Creep properties are improved through the reduction of M23C6 carbides.Thus,the loss of strength must be compensated by other strengthening mechanisms.This review also outlines the recent progress in the development of RAFM steels.Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength.Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel.The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries.This procedure increases the creep life of TMT(thermo-mechanical treatment)9Cr-1W-0.06Ta steel by~20 times compared with those of F82H and Eurofer 97 steels under 550℃/260 MPa.
文摘Recent accomplishment by the SWIP for the reduced activation ferritic/martensitic steel CLF-1 development has been reviewed. It's found that CLF- 1 steel has better room temperature tensile properties than Eurofer97 steel and has a fully martensitic microstructure.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.51325401 and U1660201)the National Magnetic Confinement Fusion Energy Research Project (Grant No.2015GB119001)
文摘In this study,the microstructures and mechanical properties of 9%Cr reduced activation ferritic/martensitic(RAFM) steel friction stir welded joints were investigated.When a W-Re tool is used,the recommended welding parameters are 300 rpm rotational speed,60 mm/min welding speed and10 kn axial force.In stir zone(SZ),austenite dynamic recrystallization induced by plastic deformation and the high cooling rates lead to an obvious refinement of prior austenite grains and martensite laths.The microstructure in SZ contains lath martensite with high dislocation density,a lot of nano-sized MX and M3C phase particles,but almost no M23C6 precipitates.In thermal mechanically affect zone(TMAZ)and heat affect zone(HAZ),refinement of prior austenite and martensitic laths and partial dissolution of M(23)C6 precipitates are obtained at relatively low rotational speed.However,with the increase of heat input,coarsening of martensitic laths,prior austenite grains,and complete dissolution of M23C6 precipitates are achieved.Impact toughness of SZ at-20℃ is slightly lower than that of base material(BM),and exhibits a decreasing trend with the increase of rotational speed.
基金supported by "Excellent Scholar Funding" with the title of "R&D on advanced structural steels in new nuclear energy system" initialed by Institute for Materials Research, Chinese Academy (grant number: Y7A7A111A1)
文摘A high Si reduced activation ferritic/martensitic(RAFM) steel for nuclear structure application is successfully designed by using Calphad method. The main designed chemical composition is C 0.18–0.22%, Cr10.0–10.5%, W 1.0–1.5%, Si 1.0–1.3%, V+Ta 0.30–0.45%, and Fe in balance. High Si design brings excellent corrosion resistance, while low activation is advantageous in the nuclear waste processing. The experimental results indicate that the newly designed high Si RAFM steel had full martensitic structure and uniformly distributed fine second phase particles, and exhibited excellent mechanical properties and corrosion resistance. Compared to the P91 steel, this new RAFM steel designed by Calphad method is expected to be a promising candidate used in nuclear power generation, which also provides a new and effective approach to the development of RAFM steel for nuclear application.
基金financially supported by the National Natural Science Foundation of China (No. 51874368)the Project of CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences (No. 2018NMSAKF03)
文摘The hot deformation behavior and workability of a new reduced activation ferritic/martensitic steel named SIMP steel for accelerator-driven system were studied. The flow curve and its microstructure were studied at 900-1200 ℃ and strain rate range of 0.001-10 s^-1. The results showed that the deformation behavior of the SIMP steel during hot compression could be manifested by the Zener-Hollomon parameter in an exponent-type equation. Based on the obtained constitutive equation, the calculated flow stresses were in agreement with the experimentally measured ones, and the average activity energies Qdrv and QHw for the initiation of dynamic recrystallization and the peak strain were calculated to be 476.1 kJ/mol and 462.7 kJ/mol, respectively. Furthermore, based on the processing maps and microstructure evolution, the optimum processing condition for the SIMP steel was determined to be 1050-1200 ℃/0.001-0.1s^-1.
文摘Helium ion irradiation at 350℃was performed to study equilibrium segregation and radiation-induced segregation(RIS)of Cr at grain boundaries in reduced activation ferritic/martensitic steels.Cr concentration at grain boundary was measured by scanning transmission electron microscopy with an energy-dispersive spectrometer.The measured Cr concentration at grain boundaries in heat treated zone was 11.7 and 12.8 wt.%in irradiated zone,respectively,which matched well to the calculated results from Mclean and modified Perk model.Equilibrium segregation and RIS of Cr mechanisms were theoretically analysed.The analysis indicates that as temperature rises,equilibrium Cr segregation decreases monotoni-cally,while RIS of Cr has a bell-shape profile,which increases first and then decreases.It is also shown that at low and high temperatures,equilibrium segregation of Cr is higher than that of RIS;at intermediate temperatures,equilibrium Cr segregation is lower than RIS.
基金supported by the National Natural Science Foundation of China (Grant No. 50971030)the National Basic Research Program of China (Grant Nos. 2009GB109004 and 2011GB108004)
文摘China Low Activation Martensitic (CLAM) steel is being studied to develop the structural materials for a fusion reactor, which has been designed based on the well-known 9Crl.5WVTa steel. The effect of tempering temperature on hardness and micro- structure of CLAM steel was studied. The strength of CLAM steel increased by adding silicon, and the ductility remained con- stant. Conversely, while CLAM steel maintained good ductility with the addition of yttrium, its tensile strengths were greatly degraded. Behaviors under electron irradiation of CLAM steel were examined using the high voltage electron microscope. Electron irradiation at 450℃ formed many voids in CLAM steel with basic composition, whereas CLAM with silicon steel did not change the microstructure significantly.
基金supported by National Basic Research Program of China(No.2007CB209800)Chinese National Fusion Project for ITER(No.2010GB109000)
文摘Two heats of low activation martensitic (LAM) steels with Ti and Ta (denominated as 9Cr-Ti and 9Cr-Ta), respectively, developed as candidate structure materials for nuclear reactor were characterized. This paper was focused on the effect of titanium on the microstructures and mechanical properties of 9Cr LAM steel in as-received condition (normalized at 950 ℃ for 30 min with water quenching plus tempered at 780 ℃ for 90 min with air cooling). Chemical analysis and microstructure observation were conducted on 9Cr-Ti and 9Cr-Ta with optical microscopy, X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. Impact properties and tensile strengths were measured with Charpy impact experiments and tensile tests. The results indicated that 9Cr-Ti and 9Cr-Ta were fully martensitic steels in as-received condition. MX type and M23C6 type precipitates were observed distributing along boundaries of prior austenite grains and martensite laths in 9Cr-Ti.The addition of titanium accelerated the precipitation of TiC and TiN, and produced much finer grains in 9Cr-Ti than 9Cr-Ta at the same normalization temperature. Mechanical properties tests showed the ductile brittle transition temperatures of 9Cr- Ti and 9Cr-Ta were about -90℃ and -85℃, respectively. The ultimate tensile strengths at room temperature and 600℃,were 680 MPa and 365 MPa for 9Cr-Ti, and 660 MPa and 335 MPa for 9Cr-Ta, respectively. The favorite impact toughness and tensile properties of 9Cr-Ti could be attributed to the fine grains in as-received condition.
基金project is supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51574079, U1460204, U1660117)the National Key Research and Development Program of China (No. 2016YFB0300602)
文摘Micromechanical behavior of a fine-grained China Low Activation Martensitic (CLAM) steel under nanoindentation was studied in this work. The grain size of the as-prepared O.lTi-CLAM steel is ~5μm and the average diameter of the spherical precipitates is ~5 nm. Both elastic modulus and hardness decrease with increasing contact depth of the nanoindenter, following an exponential decreasing function. The abnormally large contact depths should be resulted from defect concentration under the indenter. The effect of nanosized precipitates on hardness is responsible for the pop-ins occurring in the load-depth curves, corresponding to the blockage of nanosized precipitates to the dislocation movement. Nanosized VC and M23C6precipitates with the volume fractions of 0.32% and 1.21% can be identified, respectively. Different strengthening mechanisms originated from the two types of nanosized precipitates. The blockage of dislocations by VC particles leads to an Orowan strengthening whilst dislocations could cut through theM23C6particles because of the large size of the particles. The strengthening effects originated from the VC and M23C6 precipitates lead to the strength increase of .448 MPa and .254 MPa, respectively.
基金National Natural Science Foundation of China(Nos.51874081 and 51574063)Fundamental Research Funds for the Central Universities(N150204012)Liaoning Province Doctoral Research Initiation Fund Guidance Project(No.20170520079).
文摘The effects of 0.01–0.11 wt.%Zr on the inclusions,microstructure,tensile properties,and impact toughness of the China low activation martensitic steel were investigated.Results showed that Zr exhibits good deoxidation and desulfurization abilities.The scanning electron microscope was used to examine the inclusions in the ingots.The main inclusions in the alloys were Zr–Ta–O,Zr–O,and Zr–O–S.However,some blocky Zr-rich inclusions appeared in Zr-2 and Zr-3 alloys.Typical martensitic structures were observed in the alloys,and average prior austenite grain sizes of 21.1,15.7,and 14.8µm were obtained for Zr-1,Zr-2,and Zr-3 steels,respectively.However,increasing Zr content of the steels deteriorated their mechanical property,owing to the blocky inclusions.The alloy with 0.01%Zr resulted in excellent mechanical properties due to the fine inclusions and the precipitation of Zr3V3C carbides.Values of 576 and 682 MPa were obtained for the yield strength and ultimate tensile strength of Zr-1 alloy,respectively.Furthermore,the ductile–brittle transition temperature of the alloy decreased to−85℃.
基金supported by the National Basic Research Program of China (Grant No. 2007CB209801)the National Natural Science Fundation of China (Grant No. 51371030)the National High Technology Research and Development Program of China (Grant No. 2013AA031601)
文摘In view of developing novel alloys for applications in supercritical water-cooled reactor fuel cladding and in-core components, a 12%Cr reduced activation ferrite/martensite(RAFM) steel with good corrosion resistance and irradiation performance was developed. V and Ta were added to form fine MX type carbonitrides and enhance the high temperature creep rupture strength. Microstructure stability of the steel during long-term aging at 650 C was studied experimentally combined with the simulation of ThermoCalc and DICTRA software. The results show that the precipitates in the steel during long-term aging contain M23C6, MX and Laves phase. M23C6 carbides play a major role in the stabilization of the tempered martensite lath structure by exerting a large Zener pinning force as compared with MX and Laves phase.Adding V and Ta in the steel can not only promote MX precipitation, but also refine M23C6 carbides and thus improve the thermal stability of lath/subgrains, which is beneficial to the improvement of high temperature microstructure stability of the 12%Cr RAFM steel.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131)Anhui Natural Science Foundation of China(No.2108085J05)+1 种基金the National Key Research and Development Plan of China(No.2018YFE0307101)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSC-CIP009)。
文摘The helium bubbles induced by 14 MeV neutron irradiation can cause intergranular fractures in reduced activation ferritic martensitic steel,which is a candidate structural material for fusion reactors.In order to elucidate the susceptibility of different grain boundaries(GBs)to helium-induced embrittlement,the tensile fracture processes of 10 types of GBs with and without helium bubbles in body-centered cubic(bcc)iron at the relevant service temperature of 600 K were investigated via molecular dynamics methods.The results indicate that in the absence of helium bubbles,the GBs studied here can be classified into two distinct categories:brittle GBs and ductile GBs.The atomic scale analysis shows that the plastic deformation of ductile GB at high temperatures originates from complex plastic deformation mechanisms,including the Bain/Burgers path phase transition and deformation twinning,in which the Bain path phase transition is the most dominant plastic deformation mechanism.However,the presence of helium bubbles severely inhibits the plastic deformation channels of the GBs,resulting in a significant decrease in elongation at fractures.For bubble-decorated GBs,the ultimate tensile strength increases with the increase in the misorientation angle.Interestingly,the coherent twin boundary∑3{112}was found to maintain relatively high fracture strength and maximum failure strain under the influence of helium bubbles.
基金supported by the China Nuclear Energy Development Program (No. H6603100)
文摘Reduced activation ferritic/martensitic steel (RAFM) is recognized as the primary candidate structural material for ITER's test blanket module (TBM). To provide a material and property database for the design and fabrication of the Chinese helium cooled ceramic breeding TBM (CN HCCB TBM), a type of RAFM steel named CLF-1 was developed and chaxacter^zed at the Southwestern Institute of Physics (SWIP), China. In this paper, the R&D status of CLF-1 steel and the technical issues in using CLF-1 steel to manufacture CN HCCB TBM were reviewed, including the steel manufacture and different welding technologies. Several kinds of property data have been obtained for its application to the design of the ITER TBM.
基金The research is supported by“National Natural Science Foundation of China”under Grant No.61572526thanks to Mr.He from the material radiation effect team of the China Institute of Atomic Energy.With the help and guidance of Mr.He and Mr.Deng,the experiment was successfully conducted,and the results were greatly improved,which enhanced the structure of this article.Thanks to the editor for giving detailed comments,the quality of the article can be improved.
文摘With the development of society and the exhaustion of fossil energy,researcher need to identify new alternative energy sources.Nuclear energy is a very good choice,but the key to the successful application of nuclear technology is determined primarily by the behavior of nuclear materials in reactors.Therefore,we studied the radiation performance of the fusion material reduced activation ferritic/martensitic(RAFM)steel.The main novelty of this paper are the statistical analysis of RAFM steel data sets through related statistical analysis and the formula derivation of the gradient descent method(GDM)which combines the gradient descent search strategy of the Convex Optimization Theory to get the best value.Use GDM algorithm to upgrade the annealing stabilization process of simulated annealing algorithm.The yield stress performance of RAFM steel is successfully predicted by the hybrid model which is combined by simulated annealing(SA)with support vector machine(SVM)as the first time.The effect on yield stress by the main physical quantities such as irradiation temperature,irradiation dose and test temperature is also analyzed.The related prediction process is:first,we used the improved annealing algorithm to optimize the SVR model after training the SVR model on a training data set.Next,we established the yield stress prediction model of RAFM steel.The model can predict up to 96%of the data points with the prediction in the test set and the original data point in the 2range.The statistical test analysis shows that under the condition of confidence level=0.01,the calculation results of the regression effect significance analysis pass the T-test.