The morphology and amount of the retained austenite in the duplex microstructure of martensite and tower bainite of a tow,alloy cold die steel(it is called GD steel for short) with high strength and high toughness hav...The morphology and amount of the retained austenite in the duplex microstructure of martensite and tower bainite of a tow,alloy cold die steel(it is called GD steel for short) with high strength and high toughness have been investigated.The thermal and mechanical stabilities of the retained austenite were analyzed.Furthermore the effects of retained austenite on the mechanical properties of the steel were studied.The results show that the morphology and amount of retained austenite vary with silicon content in the steel.Retained austenite with high stability was responsible for the simultaneous increase in strength and toughness of the steel.The duplex microstructure of martensite and abnormal lower bainite of the steel with the maximum silicon content exhibits a relatively good strength-toughness combination.展开更多
Fatigue crack propagation rate,da/dN,and threshold stress intensity range,ΔK_(th),of steel 20CrMnMo containing low carbon martensite or low carbon martensite/bainite(LCM/B) duplex structure,obtained by oil quenching ...Fatigue crack propagation rate,da/dN,and threshold stress intensity range,ΔK_(th),of steel 20CrMnMo containing low carbon martensite or low carbon martensite/bainite(LCM/B) duplex structure,obtained by oil quenching and austempered at 360℃,have been measured using specimens under four-point bending.Observation was also made of the crack path and fracture morphology with relation to microstructure.The formation of LCM/B duplex structure,which caused by 20% lower bainite after short-time isothermal treatment,may re- markably increase ΔK_(th)and considerably decrease da/dN.The effect of microstructure on da/dN and ΔK_(th)was discussed with the emphasis on the crack propagation path.展开更多
The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrason...The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.展开更多
This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicat...This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicate. The result of thc experiments shows that the austenizing temperature should rise with increasing silicon content, otherwise much undissolved ferrite is present in the matrix after quenching. However the undissolvec ferrite can be decreased greatly or even eliminated by adding appropriate amount of ooron. On this condition, the amount of bainite gets increasing and the amount of residual austenite decreasing with the silicon cortent increasing. An approach has also been made to the mechanism of the effect of silicon on the transformation of bainite in ductile iron. The T.T.T. curves measured show that the increase of sllicon content causes the curve to shift to the left. This is quite different from the fact in steel.展开更多
The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of...The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of permeation delay time,and the diffusion coefficient in U20 Si is far less than that in U20 DSi.Moreover,the hydrogen diffusivity decreases as the volume percent of retained austenite increases.The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20 Si and U20 DSi.The retained austenite is precipitated as films.The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4kJ·mol-1.展开更多
Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate ...Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed.展开更多
Hot deformation experiments were carried out on Gleeble 1500 thermo-mechanical simulator. The bainite transformation after deformation was investigated by optical microstructure analysis. The results indicated that th...Hot deformation experiments were carried out on Gleeble 1500 thermo-mechanical simulator. The bainite transformation after deformation was investigated by optical microstructure analysis. The results indicated that the deformation accelerated the bainite transformation when the deformation was carried out at high temperature and no or little ferrite was precipitated before bainite transformation; when the deformation was carried out at low temperature, the deformation hindered the bainite transformation because a lot of ferrite precipitated before bainite transformation.展开更多
A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-a...A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-austenite trans- formation was observed to take place in two steps at low heating rate. The first step is the dissolution of bainite, and the second one is the remaining bainite-to-austenite transformation controlled by a dissolution process. The calculation result of the kinetics of austenite formation shows that the two steps occur by diffusion at low heating rate. However, at high heating rate the bainite-to-austenite transformation occurs in a single step, and the process is mainly dominated by shear. The growth rate of austenite reaches the maximum at about 835℃ at different heating rates and the growth rate of austenite as a function of temperature increases with the increase in heating rate.展开更多
The ultra-fine bainitic microstructure of a 900 MPa low carbon bainitic Cu-Ni-Mo-B steel was obtained by a newly developed relaxation precipitation control (RPC) phase transformation processing. In a pan-cake like p...The ultra-fine bainitic microstructure of a 900 MPa low carbon bainitic Cu-Ni-Mo-B steel was obtained by a newly developed relaxation precipitation control (RPC) phase transformation processing. In a pan-cake like prior-austenite grain, the micro- structure consisted of lath bainite, a little of abnormal granular bainite, and acicular ferrite. The effect of zirconium carbonitrides on the austenite grain coarsening behavior was studied by transmission electron microscopy (TEM). The results show that, the lath is narrower with increasing cooling rate. The ratio of all kinds of bainitic microstructure is proper with the intermediate cooling rate; and Zr-containing precipitates distribute uniformly, which restrains austenite grain growing in heat-affected welding zone.展开更多
The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolongi...The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature.Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation B(RF) = 1-exp(-0.0499 × t^0.7616) for bainite reaction at 350℃ was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.展开更多
The behaviour towards corrosion fatigue of low carbon bainite steel with various microstructures after tempered at different temperatures has been examined. The susceptibility of the steel to corrosion fatigue may be ...The behaviour towards corrosion fatigue of low carbon bainite steel with various microstructures after tempered at different temperatures has been examined. The susceptibility of the steel to corrosion fatigue may be improved by tempering at 300℃.展开更多
A method of fuzzy identification based on T-S fuzzy model was proposed for predicting temperature Ms from chemical composition, austenitizing temperature and time for low alloy steel. The degree of membership of each ...A method of fuzzy identification based on T-S fuzzy model was proposed for predicting temperature Ms from chemical composition, austenitizing temperature and time for low alloy steel. The degree of membership of each sample was calculated with fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Compared with the results obtained by empirical models based on the same data, the results by the fuzzy method showed good precision. The accuracy of the fuzzy model is almost 6 times higher than that of the best empirical model. The influence of alloying elements, austenitizing temperature and time on Ms was analyzed quantitatively by using the fuzzy model. It is shown that there exists a nonlinear relationship between the contents of alloying elements in steels and their Ms, and the effects of austenitizing temperature and time on Ms temperature cannot be neglected.展开更多
The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and micro...The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and microhardness test.Results show that both ε.and θ carbides,during auto-tempering, may precipitate from the low-carbon martensite matrix at the same time in the 20SiMn2V steel,however,the precipitation of the ε-carbides can be inhibited by the REM contained in the 20SiMn2 VRE steel,resulting in change of the type of precipitated carbides and decrease of the extent of auto-tempering.The“in-situ”ob- servations show that the decomposition of martensite is also inhibited by the REM contained in the 20SiMn2 VRE steel during low temperature tempering.展开更多
The conventional middle and high carbon spring steels have some drawbacks in properties, production and application. In order to meet the demands of rapid development of automobile, a new low and middle carbon spring ...The conventional middle and high carbon spring steels have some drawbacks in properties, production and application. In order to meet the demands of rapid development of automobile, a new low and middle carbon spring steel 35Si2CrMnVB, C0.34, Sil.66, MnO.80, CrO.67, V0.13, B0.001, P0.011, S0.014 wt.%, has been developed. Comparison between the new spring steel 35Si2CrMnVB and the conventional spring steel 60Si2MnA, C0.61, Si 1.75, MnO.76, P0.021, S0.018 wt.%, shows that the new spring steel has not only high strength, good ductility, good comprehensive mechanical properties, but also low decarbonization tendency, sufficient hardenability and high elastic sag resistance, etc.. The microstructure change in quenched steel caused by the decreasing of carbon contents is detected through metallographic observation, the new low and middle carbon spring steel 35Si2CrMnVB after quenching is composed of almost lath martensite with high dislocation density and only a little martensite with twin structure. It is testified that to develop low carbon spring steel with more excellent properties for automobile is feasible.展开更多
The influence of hot deformation conditions on continuous cooling bainitic transformation has been investigated for a low carbon microalloyed steel. The CCT diagrams show that deformation in unrecrpstallized austcnite...The influence of hot deformation conditions on continuous cooling bainitic transformation has been investigated for a low carbon microalloyed steel. The CCT diagrams show that deformation in unrecrpstallized austcnite ation can accelerate transformation process. Bainitic transformation in intermediate transformation temperature region is prominent, and the proeutectoid polygonal ferrite transformation at evelated high temperature is suppressed. According to optical and TEM analyses, low carbon bainitic ferrite is characterized by granular and lathlike ferrite, based on the cooling rate and deformation conditions. For nondeformation, groaps of coarse parallel ferrite lath form from the prior austenite grain boundaries with the same crystallographic orientation. For heavy deformaton, cell structure within the austenite grains due to the high dislocation density formed, which provides more nucleation sites for bainite ferrite. So deformation can discontinue the growth of ferrite laths and decrease the length of ferrite laths.展开更多
The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the...The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the microstructure was mainly the laths of bainite in the as-quenched steel. The bainitic laths were restored and combined after the steel tempered at various tempera- tures. There were rnartensite/austenite (M/A) islands and numerous dislocations within and between the bainitic laths, while very t-me precipitates of ε-Cu were also observed within the laths. With increasing the tempered temperature from 400 to 600℃, the yield strength (YS) increased from 877 to 957 MPa, whereas the ultimate tensile strength (UTS) decreased from 1020 to 985 MPa. The Charpy V-notch (CVN) varied from 68.5 to 42 J, and the value was minimal for the steel tempered at 500℃. 2008 University of Science and Technology Beijing. All rights reserved.展开更多
A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out f...A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out for 15 h at 350℃ by means of DC- pulsed plasma in 25%N2+ 75%H2 atmosphere. The microstructure, phase composition, and residual stresses profiles of the nitrided layers were determined by optical microscopy and X-ray diffraction. The microhardness profiles of the nitridied surfaces were also studied. The fatigue life, sliding wear, and erosion wear loss of the untreated specimens and plasma nitriding specimens were determined on the basis of a rotating bending fatigue tester, a ball-on-disc wear tester, and a solid particle erosion tester. The results show that the 350℃ nitrided surface is dominated by c-Fe3N and ON, which is supersaturated nitrogen solid solution. They have high hardness and chemical stabilities. So the low temperature plasma nitriding not only increases the surface hardness values but also improves the wear and erosion resistance. In addition, the fatigue limit of AISI 420 steel can also be improved by plasma nitriding at 350℃ because plasma nitriding produces residual compressive stress inside the modified layer.展开更多
Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0....Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.展开更多
The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(...The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.展开更多
During the incubation period of isothermal treatment(or aging) within the bainitic transformation temperature range in a salt bath (or quenching in water) immediately after solution treatment, not only are the def...During the incubation period of isothermal treatment(or aging) within the bainitic transformation temperature range in a salt bath (or quenching in water) immediately after solution treatment, not only are the defects formed at high temperatures maintained, but new defects can also be generated in alloys, iron alloys and steels. Due to the segregation of the solute atoms near defects through diffusion, this leads to non-uniform distributions of solute atoms in the parent phase with distinct regions of both solute enrichment and solute depletion. It is proposed that when the Ms temperature at the solute depleted regions is equal to or higher than the isothermal (or aged) temperature,nucleation of bainite occurs within these solute depleted regions in the manner of martensitic shear. Therefore it is considered that, at least in steel, iron and copper alloy systems, bainite is formed through a shear mechanism within solute depleted regions, which is controlled and formed by the solute atoms diffusion in the parent phase.展开更多
文摘The morphology and amount of the retained austenite in the duplex microstructure of martensite and tower bainite of a tow,alloy cold die steel(it is called GD steel for short) with high strength and high toughness have been investigated.The thermal and mechanical stabilities of the retained austenite were analyzed.Furthermore the effects of retained austenite on the mechanical properties of the steel were studied.The results show that the morphology and amount of retained austenite vary with silicon content in the steel.Retained austenite with high stability was responsible for the simultaneous increase in strength and toughness of the steel.The duplex microstructure of martensite and abnormal lower bainite of the steel with the maximum silicon content exhibits a relatively good strength-toughness combination.
文摘Fatigue crack propagation rate,da/dN,and threshold stress intensity range,ΔK_(th),of steel 20CrMnMo containing low carbon martensite or low carbon martensite/bainite(LCM/B) duplex structure,obtained by oil quenching and austempered at 360℃,have been measured using specimens under four-point bending.Observation was also made of the crack path and fracture morphology with relation to microstructure.The formation of LCM/B duplex structure,which caused by 20% lower bainite after short-time isothermal treatment,may re- markably increase ΔK_(th)and considerably decrease da/dN.The effect of microstructure on da/dN and ΔK_(th)was discussed with the emphasis on the crack propagation path.
基金supported by the National Key Fundamental Research and Development Program of China (No.2004CB619105)
文摘The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.
文摘This paper deals with an important role of silicon in producing ductile iron with quenched complex structure of bainite and martensite. The samples are cast in permanent mold and quenched in solution of sodium silicate. The result of thc experiments shows that the austenizing temperature should rise with increasing silicon content, otherwise much undissolved ferrite is present in the matrix after quenching. However the undissolvec ferrite can be decreased greatly or even eliminated by adding appropriate amount of ooron. On this condition, the amount of bainite gets increasing and the amount of residual austenite decreasing with the silicon cortent increasing. An approach has also been made to the mechanism of the effect of silicon on the transformation of bainite in ductile iron. The T.T.T. curves measured show that the increase of sllicon content causes the curve to shift to the left. This is quite different from the fact in steel.
基金Item Sponsored by Ministry of Science and Technology of China(G1998061513)
文摘The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of permeation delay time,and the diffusion coefficient in U20 Si is far less than that in U20 DSi.Moreover,the hydrogen diffusivity decreases as the volume percent of retained austenite increases.The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20 Si and U20 DSi.The retained austenite is precipitated as films.The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4kJ·mol-1.
基金Item Sponsored by High Technology Development Programof China (863) (2001AA332020) and National Natural ScienceFoundation of China (50271015)
文摘Utilizing Gleeble-1500 thermomechanical simulator, the influences of hot deformation parameters on continuous cooling bainite transformation in Nb-microalloyed low carbon steel were investigated. The results indicate that bainite starting temperature decreases with raising cooling rate and increases with increasing deformation temperature. Deformation has an accelerative effect on the bainite transformation when the specimens are deformed at 950 ℃. When the deformation temperature increases, the effect of deformation on bainite starting temperature is weakened. The amount of bainite is influenced by strain, cooling rate, and deformation temperature. When the specimens are deformed below 900 ℃, equiaxed ferrites are promoted and the bainite transformation is suppressed.
文摘Hot deformation experiments were carried out on Gleeble 1500 thermo-mechanical simulator. The bainite transformation after deformation was investigated by optical microstructure analysis. The results indicated that the deformation accelerated the bainite transformation when the deformation was carried out at high temperature and no or little ferrite was precipitated before bainite transformation; when the deformation was carried out at low temperature, the deformation hindered the bainite transformation because a lot of ferrite precipitated before bainite transformation.
文摘A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-austenite trans- formation was observed to take place in two steps at low heating rate. The first step is the dissolution of bainite, and the second one is the remaining bainite-to-austenite transformation controlled by a dissolution process. The calculation result of the kinetics of austenite formation shows that the two steps occur by diffusion at low heating rate. However, at high heating rate the bainite-to-austenite transformation occurs in a single step, and the process is mainly dominated by shear. The growth rate of austenite reaches the maximum at about 835℃ at different heating rates and the growth rate of austenite as a function of temperature increases with the increase in heating rate.
基金supported by the National High-Technology Research and Development Program of China (No.2003AA331020)
文摘The ultra-fine bainitic microstructure of a 900 MPa low carbon bainitic Cu-Ni-Mo-B steel was obtained by a newly developed relaxation precipitation control (RPC) phase transformation processing. In a pan-cake like prior-austenite grain, the micro- structure consisted of lath bainite, a little of abnormal granular bainite, and acicular ferrite. The effect of zirconium carbonitrides on the austenite grain coarsening behavior was studied by transmission electron microscopy (TEM). The results show that, the lath is narrower with increasing cooling rate. The ratio of all kinds of bainitic microstructure is proper with the intermediate cooling rate; and Zr-containing precipitates distribute uniformly, which restrains austenite grain growing in heat-affected welding zone.
基金the financial supports from the National Natural Science Foundation of China(NSFC)(Nos.51874216 and 51704217)the Major Projects of Technology Innovation of Hubei Province,China(No.2017AAA116)
文摘The effect of austempering time after the bainitic transformation on the microstructure and property in a low-carbon bainite steel was investigated by metallography and dilatometry. The results showed that by prolonging the austempering time after the bainite transformation, the amount of large-size martensite/austenite islands decreased, but no significant change of the amount and morphology of bainite were observed. In addition, more austenite with a high carbon content was retained by prolonging the holding time at the bainite transformation temperature.Moreover, with a longer holding time, the elongation was improved at the expense of a small decrease in tensile strength. Finally, the Avrami equation B(RF) = 1-exp(-0.0499 × t^0.7616) for bainite reaction at 350℃ was obtained for the tested steel. The work provided a reference for tailoring the properties of low-carbon steels.
文摘The behaviour towards corrosion fatigue of low carbon bainite steel with various microstructures after tempered at different temperatures has been examined. The susceptibility of the steel to corrosion fatigue may be improved by tempering at 300℃.
文摘A method of fuzzy identification based on T-S fuzzy model was proposed for predicting temperature Ms from chemical composition, austenitizing temperature and time for low alloy steel. The degree of membership of each sample was calculated with fuzzy clustering algorithm. Kalman filtering was used to identify the consequent parameters. Compared with the results obtained by empirical models based on the same data, the results by the fuzzy method showed good precision. The accuracy of the fuzzy model is almost 6 times higher than that of the best empirical model. The influence of alloying elements, austenitizing temperature and time on Ms was analyzed quantitatively by using the fuzzy model. It is shown that there exists a nonlinear relationship between the contents of alloying elements in steels and their Ms, and the effects of austenitizing temperature and time on Ms temperature cannot be neglected.
文摘The effect of rare earth metals(REM)on the characteristics of auto-tempering and decomposition of martensite for low-carbon and low-alloy steels(20SiMn2V and 20SiMn2VRE)was investigated using TEM,dilatometer and microhardness test.Results show that both ε.and θ carbides,during auto-tempering, may precipitate from the low-carbon martensite matrix at the same time in the 20SiMn2V steel,however,the precipitation of the ε-carbides can be inhibited by the REM contained in the 20SiMn2 VRE steel,resulting in change of the type of precipitated carbides and decrease of the extent of auto-tempering.The“in-situ”ob- servations show that the decomposition of martensite is also inhibited by the REM contained in the 20SiMn2 VRE steel during low temperature tempering.
基金supports from the Natural Science Foundation of Jiangxi Province,P.R.China under contracts No.0250024.
文摘The conventional middle and high carbon spring steels have some drawbacks in properties, production and application. In order to meet the demands of rapid development of automobile, a new low and middle carbon spring steel 35Si2CrMnVB, C0.34, Sil.66, MnO.80, CrO.67, V0.13, B0.001, P0.011, S0.014 wt.%, has been developed. Comparison between the new spring steel 35Si2CrMnVB and the conventional spring steel 60Si2MnA, C0.61, Si 1.75, MnO.76, P0.021, S0.018 wt.%, shows that the new spring steel has not only high strength, good ductility, good comprehensive mechanical properties, but also low decarbonization tendency, sufficient hardenability and high elastic sag resistance, etc.. The microstructure change in quenched steel caused by the decreasing of carbon contents is detected through metallographic observation, the new low and middle carbon spring steel 35Si2CrMnVB after quenching is composed of almost lath martensite with high dislocation density and only a little martensite with twin structure. It is testified that to develop low carbon spring steel with more excellent properties for automobile is feasible.
文摘The influence of hot deformation conditions on continuous cooling bainitic transformation has been investigated for a low carbon microalloyed steel. The CCT diagrams show that deformation in unrecrpstallized austcnite ation can accelerate transformation process. Bainitic transformation in intermediate transformation temperature region is prominent, and the proeutectoid polygonal ferrite transformation at evelated high temperature is suppressed. According to optical and TEM analyses, low carbon bainitic ferrite is characterized by granular and lathlike ferrite, based on the cooling rate and deformation conditions. For nondeformation, groaps of coarse parallel ferrite lath form from the prior austenite grain boundaries with the same crystallographic orientation. For heavy deformaton, cell structure within the austenite grains due to the high dislocation density formed, which provides more nucleation sites for bainite ferrite. So deformation can discontinue the growth of ferrite laths and decrease the length of ferrite laths.
文摘The effect of tempering temperature on the microstructure and mechanical properties of ultra-high strength, copperbearing, low-carbon bainitic steel has been investigated in the experiment. The results showed that the microstructure was mainly the laths of bainite in the as-quenched steel. The bainitic laths were restored and combined after the steel tempered at various tempera- tures. There were rnartensite/austenite (M/A) islands and numerous dislocations within and between the bainitic laths, while very t-me precipitates of ε-Cu were also observed within the laths. With increasing the tempered temperature from 400 to 600℃, the yield strength (YS) increased from 877 to 957 MPa, whereas the ultimate tensile strength (UTS) decreased from 1020 to 985 MPa. The Charpy V-notch (CVN) varied from 68.5 to 42 J, and the value was minimal for the steel tempered at 500℃. 2008 University of Science and Technology Beijing. All rights reserved.
基金supported by National Natural Science Foundation of China(Nos.50171054 and 50671085)National High Technical Research and Development Programme of China(No.2007AA03Z521).
文摘A series of experiments were carried out to study the influence of low temperature plasma nitriding on the mechanical properties of AISI 420 martensitic stainless steel. Plasma nitriding experiments were carried out for 15 h at 350℃ by means of DC- pulsed plasma in 25%N2+ 75%H2 atmosphere. The microstructure, phase composition, and residual stresses profiles of the nitrided layers were determined by optical microscopy and X-ray diffraction. The microhardness profiles of the nitridied surfaces were also studied. The fatigue life, sliding wear, and erosion wear loss of the untreated specimens and plasma nitriding specimens were determined on the basis of a rotating bending fatigue tester, a ball-on-disc wear tester, and a solid particle erosion tester. The results show that the 350℃ nitrided surface is dominated by c-Fe3N and ON, which is supersaturated nitrogen solid solution. They have high hardness and chemical stabilities. So the low temperature plasma nitriding not only increases the surface hardness values but also improves the wear and erosion resistance. In addition, the fatigue limit of AISI 420 steel can also be improved by plasma nitriding at 350℃ because plasma nitriding produces residual compressive stress inside the modified layer.
基金Funded by the National Natural Science Foundation of China(NSFC)(No.51274154)
文摘Two kinds of Mn-Si-Mo low carbon steels were designed to study the effects of Mn on the microstructures and properties of hot rolled low carbon bainitic steels.To reduce the production cost,a very low Mo content of 0.13%was added in both steels.After hot rolling,the mechanical properties of samples were tested.Microstructure was observed and analyzed by optical microscope and transmission electron microscope.The results show that the strength of tested steels increases with the increase in Mn content,while the elongation decreases.When Mn content increases,the bainite microstructure increases.The results can provide a theoretical basis for composition design and industrial production of low cost low carbon bainitic steels.
基金Funded by State Key Lab of Advanced Welding and Joint,Harbin Institute of Technology(No.09014)the Natural Science Foundation of Hubei Province in China(No.2007ABA040)
文摘The mechanical properties, creep rupture strength, creep damage and failure characteristics of dissimilar metal welded joint (DMWJ) between martensitic (SA213T91) and bainitic heat-resistant steel (12Cr2MoWVTiB(G102)) have been investigated by means of pulsed argon arc welding, high temperature accelerated simulation, mechanical and creep rupture test, and scanning electronic microscope (SEM). The results show that there is a marked drop of mechanical properties of undermatching joint, and low ductility cracking along weld/G102 interface is induced due to creep damage. Creep rupture strength of overmatching joint is the least. The mechanical properties of medium matching joint are superior to those of overmatching and undermatching joint, and creep damage and failure tendency along the interface of weld/G102 are lower than those of overmatching and undermatching joint after accelerated simulation for 500 h, 1 000 h, 1 500 h, and the creep rupture strength of medium matching joint is the same as that of undermatching joint. Therefore, it is reasonable that the medium matching material is used for dissimilar welded joint between martensitic and bainitic steel.
基金This work was supported by the National Natural Science Foundation of China(Grant No.59171031)
文摘During the incubation period of isothermal treatment(or aging) within the bainitic transformation temperature range in a salt bath (or quenching in water) immediately after solution treatment, not only are the defects formed at high temperatures maintained, but new defects can also be generated in alloys, iron alloys and steels. Due to the segregation of the solute atoms near defects through diffusion, this leads to non-uniform distributions of solute atoms in the parent phase with distinct regions of both solute enrichment and solute depletion. It is proposed that when the Ms temperature at the solute depleted regions is equal to or higher than the isothermal (or aged) temperature,nucleation of bainite occurs within these solute depleted regions in the manner of martensitic shear. Therefore it is considered that, at least in steel, iron and copper alloy systems, bainite is formed through a shear mechanism within solute depleted regions, which is controlled and formed by the solute atoms diffusion in the parent phase.