The influence of rare earth( RE) content on mechanical properties and abrasion resistance of low chromium semi-steel was studied by means of metallographic examination,scanning electron microscopic examination and mec...The influence of rare earth( RE) content on mechanical properties and abrasion resistance of low chromium semi-steel was studied by means of metallographic examination,scanning electron microscopic examination and mechanical property test. The experiment results show that RE can improve the comprehensive properties,especially in combination with proper heat treatment. The optimum properties of low chromium semi-steel modified by RE of 0. 25 % could be obtained by normalization at 950 ℃ for 3 h. The main reason is the change in morphology and distribution of eutectic carbide and the precipitation of granular carbides.展开更多
The preparing method,rolling technology and mechanical properties of low chromium semi-steel grinding ball by cross rolling were studied.The results show that when the low chromium semi-steel bar is forged from55mm to...The preparing method,rolling technology and mechanical properties of low chromium semi-steel grinding ball by cross rolling were studied.The results show that when the low chromium semi-steel bar is forged from55mm to50mm,cross-rolled into grinding ball at 1 000-1 050℃,air cooled and tempered at 550℃for 2h,the best mechanical properties,especially the abrasive resistance under the action of hard abrasive,can be obtained.展开更多
The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi steel in as cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this mater...The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi steel in as cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide′s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950 ℃ for 3 h.展开更多
The low-energy multi-impact fracture resistance of the cross rolled low chromium cast semi-steel containing RE grinding balls was studied. Moreover, its damage mode was analyzed by means of metallographic examination,...The low-energy multi-impact fracture resistance of the cross rolled low chromium cast semi-steel containing RE grinding balls was studied. Moreover, its damage mode was analyzed by means of metallographic examination, scanning electron microscopic examination and drop ball test. The results show that it can obtain extractive impact fracture resistance after proper heat treatment. More advantages were obtained for the ball worked in the condition of low-imp ductility act. The main reasons are the function of RE and the change in morphology of eutectic carbide network.展开更多
The formation and growth of thermal fatigue crack in low-chromium semi-steel were investigated by means of optical microscope and scanning electron microscope, and the function of RE in low-chromium semi-steel was ana...The formation and growth of thermal fatigue crack in low-chromium semi-steel were investigated by means of optical microscope and scanning electron microscope, and the function of RE in low-chromium semi-steel was analyzed. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides, and the cracks not only grow and spread but also join each other. RE can improve the eutectic carbide′s morphology, inhibit the generation and propagation of thermal fatigue cracks, and therefore promote the activation energy for the crack′s propagation, which is especially more noticeable in case of the RE modification in combination with heat treatment. The mathematical model of the crack propagation is put forward.展开更多
The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2...The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.展开更多
Mesoporous chromium aluminophosphate (CrAIPO) was successfully synthesized via solid state reaction (SSR) route at low temperature in the presence of a cationic surfactant cetyltrimethyl ammonium bromide (CTAB) ...Mesoporous chromium aluminophosphate (CrAIPO) was successfully synthesized via solid state reaction (SSR) route at low temperature in the presence of a cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and inorganic sources such as A1C13 · 6H20, CrCI3 · 6H20 and NaH2PO4 · 2H20. Characterizations by means of powder X-ray diffraction (XRD), N2 adsorption- desorption, high resolution transmission electron microscopy (HR-TEM), scanning electron micrography (SEM), energy dispersion spectroscopy (EDS), thermo-gravimetry (TG), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet visible light spectroscopy (UV-Vis) were carried out to understand both the pore characteristics and electron transition route of these obtained materials. The experimental results show that the meso-CrA1PO materials with various Cr/A1 molar ratios possess a mesostructure and a specific surface area of 193 to 310 m2/g corresponding to an average pore size of 5.5 to 2.2 rim, respectively. The maxium content of Cr in meso-CrA1PO materials synthesized via SSR route can achieve 16.7wt%, being significantly higher than that of the meso-CrA1PO prepared via a conventional sol-gel route. Meanwhile, the formation mechanism of the meso-CrA1PO was also proposed.展开更多
The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the ...The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.展开更多
The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic e...The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experimental results show that heating temperature has great effect on impact toughness (α_k), bending fatigue (σ_(bb)) and relative toughness (σ_(bb)×f), but little effect on hardness (HRC). When the specimen was held at 960 ℃ for 3 h, it has better comprehensive mechanical properties, and the reason and regularity of the change for mechanical properties of the cast iron were reviewed.展开更多
Low temperature composite chromizing is a process composed of a plain ion-carbonitriding or ion-nitriding at 550-580℃, followed by a low-temperature chromizing in a salt-bath of 590℃. The microstructure and properti...Low temperature composite chromizing is a process composed of a plain ion-carbonitriding or ion-nitriding at 550-580℃, followed by a low-temperature chromizing in a salt-bath of 590℃. The microstructure and properties of the low temperature composite chromized layer on H13 tool steel were investigated using metallography, X-ray diffraction, microanalysis, hardness and wear tests. It was found that this low temperature process was thermo-dynamically and kinetically possible, and the composite chromized layer on H13 steel, with a thickness of 3-6 μm, consisted of three sub-layers (bands), viz. the outer Cr-rich one, the intermediate (black) one, and the inner, original white layer. After chromizing, the former diffusion layer was thickened. The results of X-ray diffraction showed that the composite chromized layer contained such nitrides and carbides of chromium as CrN, Cr2N, (Cr, Fe)23C6, and (Cr, Fe)7C3, as well as plain α-(Fe, Cr). A high surface microhardness of 1450-1550 HV0.025, which is much higher than that obtained by the conventional ion carbonitriding and ion nitriding, was obtained. In addition, an excellent wear resistance was gained on the composite chromized layer.展开更多
This study investigated the removal of hexavalent chromium, Cr(VI) from aqueous solution by adsorption using palm oil fuel ash (POFA), an agricultural waste from the palm oil industry. POFA adsorbent was characterized...This study investigated the removal of hexavalent chromium, Cr(VI) from aqueous solution by adsorption using palm oil fuel ash (POFA), an agricultural waste from the palm oil industry. POFA adsorbent was characterized by X-ray diffraction (XRD) analysis. Batch adsorption study revealed that the optimum conditions for the removal were as follows: pH 2, adsorbent dosage 80 g/L and contact time of 6 min, which resulted in 92% removal and 0.464 mg/g maximum adsorption capacity. Adsorption isotherm and kinetic studies showed that Freundlich isotherm and pseudo-second-order kinetic models fitted best to the experimental data. Column adsorption study at 5 mL/min of flow rate showed that 90% removal was obtained at 2 min of contact time which represented its breakthrough point. The column reached saturation at 30 min and the maximum column adsorption capacity recorded was 0.412 mg/g. The column adsorption behavior showed good fit with both Thomas and Yoon-Nelson kinetic models. These findings suggested that the utilization of POFA as a low-cost adsorbent to remove Cr(VI) from wastewater, either in batch or fixed bed adsorption system is not only effective, but concurrently will help to reduce wastes from the palm oil industry.展开更多
基金Item Sponsored by Science and Technology Guiding Project of Hebei Province of China(94122123)
文摘The influence of rare earth( RE) content on mechanical properties and abrasion resistance of low chromium semi-steel was studied by means of metallographic examination,scanning electron microscopic examination and mechanical property test. The experiment results show that RE can improve the comprehensive properties,especially in combination with proper heat treatment. The optimum properties of low chromium semi-steel modified by RE of 0. 25 % could be obtained by normalization at 950 ℃ for 3 h. The main reason is the change in morphology and distribution of eutectic carbide and the precipitation of granular carbides.
基金Item Sponsored by Guiding Program of Science and Technology Research of Hebei of China(94122123)
文摘The preparing method,rolling technology and mechanical properties of low chromium semi-steel grinding ball by cross rolling were studied.The results show that when the low chromium semi-steel bar is forged from55mm to50mm,cross-rolled into grinding ball at 1 000-1 050℃,air cooled and tempered at 550℃for 2h,the best mechanical properties,especially the abrasive resistance under the action of hard abrasive,can be obtained.
文摘The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi steel in as cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide′s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950 ℃ for 3 h.
文摘The low-energy multi-impact fracture resistance of the cross rolled low chromium cast semi-steel containing RE grinding balls was studied. Moreover, its damage mode was analyzed by means of metallographic examination, scanning electron microscopic examination and drop ball test. The results show that it can obtain extractive impact fracture resistance after proper heat treatment. More advantages were obtained for the ball worked in the condition of low-imp ductility act. The main reasons are the function of RE and the change in morphology of eutectic carbide network.
文摘The formation and growth of thermal fatigue crack in low-chromium semi-steel were investigated by means of optical microscope and scanning electron microscope, and the function of RE in low-chromium semi-steel was analyzed. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides, and the cracks not only grow and spread but also join each other. RE can improve the eutectic carbide′s morphology, inhibit the generation and propagation of thermal fatigue cracks, and therefore promote the activation energy for the crack′s propagation, which is especially more noticeable in case of the RE modification in combination with heat treatment. The mathematical model of the crack propagation is put forward.
文摘The influence of Cr on the initial corrosion behavior of low-alloy steels exposed to a CO2–O2–H2S–SO2 wet–dry corrosion environment was investigated using weight-loss measurements, scanning electron microscopy, N2 adsorption tests, X-ray diffraction analysis, and electrochemical impedance spectroscopy. The results show that the corrosion rate increases with increasing Cr content in samples subjected to corrosion for 21 d. However, the rust grain size decreases, its specific surface area increases, and it becomes more compact and denser with increasing Cr content, which indicates the enhanced protectivity of the rust. The results of charge transfer resistance(Rct) calculations indicate that higher Cr contents can accelerate the corrosion during the first 7 d and promote the formation of the enhanced protective inner rust after 14 d; the formed protective inner rust is responsible for the greater corrosion resistance during long-term exposure.
基金Funded by the Program for New Century Excellent Talents in Universitythe Ministry of Education of China+3 种基金the National Natural Science Foundation of China (No.21061006)the Research of Natural Science and Technology Foundation of Guizhou Province ([2010]2006),Chinathe Natural Science Research Foundation of Education Bureau of Guizhou Province (No.2007083)the China Guizhou Province Characteristic Leading Academic Discipline Project in Material Physics and Chemistry (No.[2011]208)
文摘Mesoporous chromium aluminophosphate (CrAIPO) was successfully synthesized via solid state reaction (SSR) route at low temperature in the presence of a cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and inorganic sources such as A1C13 · 6H20, CrCI3 · 6H20 and NaH2PO4 · 2H20. Characterizations by means of powder X-ray diffraction (XRD), N2 adsorption- desorption, high resolution transmission electron microscopy (HR-TEM), scanning electron micrography (SEM), energy dispersion spectroscopy (EDS), thermo-gravimetry (TG), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet visible light spectroscopy (UV-Vis) were carried out to understand both the pore characteristics and electron transition route of these obtained materials. The experimental results show that the meso-CrA1PO materials with various Cr/A1 molar ratios possess a mesostructure and a specific surface area of 193 to 310 m2/g corresponding to an average pore size of 5.5 to 2.2 rim, respectively. The maxium content of Cr in meso-CrA1PO materials synthesized via SSR route can achieve 16.7wt%, being significantly higher than that of the meso-CrA1PO prepared via a conventional sol-gel route. Meanwhile, the formation mechanism of the meso-CrA1PO was also proposed.
文摘The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.
文摘The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experimental results show that heating temperature has great effect on impact toughness (α_k), bending fatigue (σ_(bb)) and relative toughness (σ_(bb)×f), but little effect on hardness (HRC). When the specimen was held at 960 ℃ for 3 h, it has better comprehensive mechanical properties, and the reason and regularity of the change for mechanical properties of the cast iron were reviewed.
基金This work was financially supported by the Research Fund for the Doctoral Program of High Education of China(No.20030561001)by the National Natural Science Foundation of China(Grant No.50371028).
文摘Low temperature composite chromizing is a process composed of a plain ion-carbonitriding or ion-nitriding at 550-580℃, followed by a low-temperature chromizing in a salt-bath of 590℃. The microstructure and properties of the low temperature composite chromized layer on H13 tool steel were investigated using metallography, X-ray diffraction, microanalysis, hardness and wear tests. It was found that this low temperature process was thermo-dynamically and kinetically possible, and the composite chromized layer on H13 steel, with a thickness of 3-6 μm, consisted of three sub-layers (bands), viz. the outer Cr-rich one, the intermediate (black) one, and the inner, original white layer. After chromizing, the former diffusion layer was thickened. The results of X-ray diffraction showed that the composite chromized layer contained such nitrides and carbides of chromium as CrN, Cr2N, (Cr, Fe)23C6, and (Cr, Fe)7C3, as well as plain α-(Fe, Cr). A high surface microhardness of 1450-1550 HV0.025, which is much higher than that obtained by the conventional ion carbonitriding and ion nitriding, was obtained. In addition, an excellent wear resistance was gained on the composite chromized layer.
文摘This study investigated the removal of hexavalent chromium, Cr(VI) from aqueous solution by adsorption using palm oil fuel ash (POFA), an agricultural waste from the palm oil industry. POFA adsorbent was characterized by X-ray diffraction (XRD) analysis. Batch adsorption study revealed that the optimum conditions for the removal were as follows: pH 2, adsorbent dosage 80 g/L and contact time of 6 min, which resulted in 92% removal and 0.464 mg/g maximum adsorption capacity. Adsorption isotherm and kinetic studies showed that Freundlich isotherm and pseudo-second-order kinetic models fitted best to the experimental data. Column adsorption study at 5 mL/min of flow rate showed that 90% removal was obtained at 2 min of contact time which represented its breakthrough point. The column reached saturation at 30 min and the maximum column adsorption capacity recorded was 0.412 mg/g. The column adsorption behavior showed good fit with both Thomas and Yoon-Nelson kinetic models. These findings suggested that the utilization of POFA as a low-cost adsorbent to remove Cr(VI) from wastewater, either in batch or fixed bed adsorption system is not only effective, but concurrently will help to reduce wastes from the palm oil industry.