Tubal pregnancy is a common abnormal pregnancy manifestation,and the ordinary conservative treatment of tubal adhesion usually leads to the rupture of fallopian tube,which increases the risk of a second ectopic pregna...Tubal pregnancy is a common abnormal pregnancy manifestation,and the ordinary conservative treatment of tubal adhesion usually leads to the rupture of fallopian tube,which increases the risk of a second ectopic pregnancy.To avoid this symptom,it is suitable to implant a stent to separate the adhesion.Here we prepared the PBAT/PLGA foam as the stent material using supercritical CO_(2) foaming technology.With uniform macroporous structure and thin-wall feature,the foam possessed low compressive modulus in prevention of the possible second injury to the fallopian tube.The introduction of PLGA 50/50 improved the biodegradable capability of the foam,with a mass loss about 20% after a 12-week hydrolysis.After implanted into the ruptured fallopian tube of the rabbit model,the foam displayed excellent biocompatibility,and provided a good support to prevent tubal adhesion.As such,this work provides the foam material as a promising candidate for fallopian tube stent to remedy the tubal adhesion.展开更多
With the rapid development of high-power-density electronic devices,interface thermal resistance has become a critical barrier for effective heat management in high-performance electronic products.Therefore,there is a...With the rapid development of high-power-density electronic devices,interface thermal resistance has become a critical barrier for effective heat management in high-performance electronic products.Therefore,there is an urgent demand for advanced thermal interface materials(TIMs)with high cross-plane thermal conductivity and excellent compressibility to withstand increasingly complex operating conditions.To achieve this aim,a promising strategy involves vertically arranging highly thermoconductive graphene on polymers.However,with the currently available methods,achieving a balance between low interfacial thermal resistance,bidirectional high thermal conductivity,and large-scale production is challenging.Herein,we prepared a graphene framework with continuous filler structures in in-plane and cross-plane directions by bonding corrugated graphene to planar graphene paper.The interface interaction between the graphene paper framework and polymer matrix was enhanced via surface functionalization to reduce the interface thermal resistance.The resulting three-dimensional thermal framework endows the polymer composite material with a cross-plane thermal conductivity of 14.4 W·m^(-1)·K^(-1)and in-plane thermal conductivity of 130W·m^(-1)·K^(-1)when the thermal filler loading is 10.1 wt%,with a thermal conductivity enhancement per 1 wt%filler loading of 831%,outperforming various graphene structures as fillers.Given its high thermal conductivity,low contact thermal resistance,and low compressive modulus,the developed highly thermoconductive composite material demonstrates superior performance in TIM testing compared with TFLEX-700,an advanced commercial TIM,effectively solving the interfacial heat transfer issues in electronic systems.This novel filler structure framework also provides a solution for achieving a balance between efficient thermal management and ease of processing.展开更多
基金supported by Ministry of Education of the People’s Republic of China-Joint Foundation of China-Japan Friendship Hospital&Beijing University of Chemical Technology(XK2020-12).
文摘Tubal pregnancy is a common abnormal pregnancy manifestation,and the ordinary conservative treatment of tubal adhesion usually leads to the rupture of fallopian tube,which increases the risk of a second ectopic pregnancy.To avoid this symptom,it is suitable to implant a stent to separate the adhesion.Here we prepared the PBAT/PLGA foam as the stent material using supercritical CO_(2) foaming technology.With uniform macroporous structure and thin-wall feature,the foam possessed low compressive modulus in prevention of the possible second injury to the fallopian tube.The introduction of PLGA 50/50 improved the biodegradable capability of the foam,with a mass loss about 20% after a 12-week hydrolysis.After implanted into the ruptured fallopian tube of the rabbit model,the foam displayed excellent biocompatibility,and provided a good support to prevent tubal adhesion.As such,this work provides the foam material as a promising candidate for fallopian tube stent to remedy the tubal adhesion.
基金financially supported by the National Natural Science Foundation of China(Nos.52130303,52327802 and 52173078)National Key R&D Program of China(No.2022YFB3805702)。
文摘With the rapid development of high-power-density electronic devices,interface thermal resistance has become a critical barrier for effective heat management in high-performance electronic products.Therefore,there is an urgent demand for advanced thermal interface materials(TIMs)with high cross-plane thermal conductivity and excellent compressibility to withstand increasingly complex operating conditions.To achieve this aim,a promising strategy involves vertically arranging highly thermoconductive graphene on polymers.However,with the currently available methods,achieving a balance between low interfacial thermal resistance,bidirectional high thermal conductivity,and large-scale production is challenging.Herein,we prepared a graphene framework with continuous filler structures in in-plane and cross-plane directions by bonding corrugated graphene to planar graphene paper.The interface interaction between the graphene paper framework and polymer matrix was enhanced via surface functionalization to reduce the interface thermal resistance.The resulting three-dimensional thermal framework endows the polymer composite material with a cross-plane thermal conductivity of 14.4 W·m^(-1)·K^(-1)and in-plane thermal conductivity of 130W·m^(-1)·K^(-1)when the thermal filler loading is 10.1 wt%,with a thermal conductivity enhancement per 1 wt%filler loading of 831%,outperforming various graphene structures as fillers.Given its high thermal conductivity,low contact thermal resistance,and low compressive modulus,the developed highly thermoconductive composite material demonstrates superior performance in TIM testing compared with TFLEX-700,an advanced commercial TIM,effectively solving the interfacial heat transfer issues in electronic systems.This novel filler structure framework also provides a solution for achieving a balance between efficient thermal management and ease of processing.