Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important...Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals.展开更多
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
Low cycle fatigue (LCF) behavior of laser melting deposited (LMD) TC18 titanium alloy was studied at room temperature. Microstructure consisting of fine lamella-like primary α phase and transformed β matrix was ...Low cycle fatigue (LCF) behavior of laser melting deposited (LMD) TC18 titanium alloy was studied at room temperature. Microstructure consisting of fine lamella-like primary α phase and transformed β matrix was obtained by double annealed treatment, and inhomogeneous grain boundaryαphase was detected. Fatigue fracture surfaces and longitudinal sections of LCF specimens were examined by optical microscopy and scanning electron microscopy. Results indicate that more than one crack initiation site can be detected on the LCF fracture surface. The fracture morphology of the secondary crack initiation site is different from that of the primary crack initiation site. When the crack grows along the grain boundaryαphase, continuous grain boundaryαphase leads to a straight propagating manner while discontinuous grain boundaryαphase gives rise to flexural propagating mode.展开更多
Based on the failure model of building structural steels under earthquake loading, the low cycle fatigue test at constant strain, the stochastical fatigue test under real earthquake load spectrum and the structural fa...Based on the failure model of building structural steels under earthquake loading, the low cycle fatigue test at constant strain, the stochastical fatigue test under real earthquake load spectrum and the structural fatigue test are carried out. The experimental results show that microalloying of V Ti and Nb can improve the anti-seismic propersties of steel bars. In the high strain and shori life range, both the static strength and ductility of steels are very important to increasing the low cycle fatigue resistance of steels.展开更多
Nickel-based superalloys are easy to produce low cycle fatigue(LCF)damage when they are subjected to high temperature and mechanical stresses.Fatigue life prediction of nickel-based superalloys is of great importance ...Nickel-based superalloys are easy to produce low cycle fatigue(LCF)damage when they are subjected to high temperature and mechanical stresses.Fatigue life prediction of nickel-based superalloys is of great importance for their reliable practical application.To investigate the effects of total strain and grain size on LCF behavior,the high temperature LCF tests were carried out for a nickel-based superalloy.The results show that the fatigue lives decreased with the increase of strain amplitude and grain size.A new LCF life prediction model was established considering the effect of grain size on fatigue life.Error analyses indicate that the prediction accuracy of the new LCF life model is higher than those of Manson-Coffin relationship and Ostergren energy method.展开更多
The effects of recrystallization on low cycle fatigue behavior were investigated on directionally solidified Co-base superalloy DZ40M. Optical microscopy and SEM were used to examine the microstructure and fracture su...The effects of recrystallization on low cycle fatigue behavior were investigated on directionally solidified Co-base superalloy DZ40M. Optical microscopy and SEM were used to examine the microstructure and fracture surface of the specimens. The mechanical testing results demonstrated that the low cycle fatigue property of DZ40M significantly decreased with the partial recrystallization. Fatigue cracks initiate near the carbides and the grain boundaries with slip-bands. Both the fatigue crack initiation and propagation can be accelerated with the occurrences of recrystallized grain boundaries.展开更多
The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM...The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM and XRD, the modality of carbides and the full width half-maximum (FWHM) of martensite (211) [M(211)] of Xray diffraction spectrum in fatigue specimen were studied. The results showed that the cyclic stress response behav ior generally showed an initial exponential softening for the first few cycles, followed by a gradual softening without cyclic softening saturation. The fatigue behavior of the steel is closely related to the hardness level. The hardness diminution and the variation of half-width M(211) are remarkably influenced by the interaction between the cyclic plastic deformation and the thermal loading when the fatigue temperature exceeds the tempering temperature of the steel.展开更多
Low cycle fatigue behavior of extruded AZ80 magnesium alloy was investigated under uniaxial tension-compression at different strain amplitudes and strain rates.The results show that the extruded AZ80 magnesium alloy e...Low cycle fatigue behavior of extruded AZ80 magnesium alloy was investigated under uniaxial tension-compression at different strain amplitudes and strain rates.The results show that the extruded AZ80 magnesium alloy exhibits cyclic hardening at strain amplitudes ranging from 0.4%to 1.0%,the asymmetry of hysteresis loops becomes increasingly obvious when the strain amplitude increases.Higher strain rates correspond to higher stress amplitudes,high mean stresses and short fatigue life.{10–12}extension twins play a role in the cyclic deformation under higher strain amplitudes(0.8%,1.0%).The relationship between total strain energy density and fatigue life can be described by the modified Morrow model.The effect of strain rate on the fatigue life can also be predicted by the model.展开更多
The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low...The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃.展开更多
The low cycle fatigue(LCF)properties of as-extruded AZ31 Mg alloy were investigated under total strain amplitudes in the range of 0.4%-1.2%with strain rate of 1×10- 2s -1.Due to the twinning effect in compression...The low cycle fatigue(LCF)properties of as-extruded AZ31 Mg alloy were investigated under total strain amplitudes in the range of 0.4%-1.2%with strain rate of 1×10- 2s -1.Due to the twinning effect in compression during loading and the detwinning effect during unloading,the alloy showed an asymmetric hysteresis loop.The cyclic stress response exhibited cyclic hardening at high total strain amplitudes.The cyclic deformation behaviors were discussed using the Coffin-Manson plot,which divided the plastic strain amplitudes into the tension side and the compression side.Through the LCF tests that were started from either tension or compression under a total strain amplitude of 1.0%,the interaction between the twinning effect and dislocation was analyzed.The twinning effect during the LCF test and the variation of the dislocation density were investigated using optical microscopy and transmission electron microscopy,respectively.展开更多
The effects of hydrogen atoms on behaviour of low cycle fatigue of 2.25Cr-1Mo steel have been investigated in present work. The results indicate that the cyclic softening rate and low cycle fatigue life are respective...The effects of hydrogen atoms on behaviour of low cycle fatigue of 2.25Cr-1Mo steel have been investigated in present work. The results indicate that the cyclic softening rate and low cycle fatigue life are respectively increased and reduced remarkably by hydrogen atoms. In addition, hydrogen atoms make the original stress amplitude of low cycle fatigue increase, which is because of the drag effect of hydrogen atoms on the moving dislocations. Analyses using electron microscopy show that hydrogen atoms accelerate crack initiation of low cycle fatigue from inclusion and transfer the source of low cycle fatigue crack from the surface of specimen to the inclusion, which results in the marked decrease of low cycle fatigue life. The increase of cyclic softening rate for hydrogen charged specimen is due to hydrogen atoms accelerating the initiating and growing of microvoids from the secondary phase particles in the steel. The reducing of the drag effect of hydrogen atoms on moving dislocations is also helpful to the increase of the cyclic softening rate.展开更多
The cyclic stress response and lowcycle fatigue life for wrought nickelbased superalloy GH4049 were investigated in the temperature range from 500 to 800 The relationship between the strain amplitude and the number o...The cyclic stress response and lowcycle fatigue life for wrought nickelbased superalloy GH4049 were investigated in the temperature range from 500 to 800 The relationship between the strain amplitude and the number of stress reversals was given. The behavior of cyclic hardening was observed for higher strain amplitudes at all testing temperatures and the lowcycle fatigue life generally decreased with increasing testing temperature for the same strain range. In addition, fracture surfaces of the fatigued samples were examined by using a scanning electron microscope.展开更多
Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, an...Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, and the reliability analysis method based on load-life interference model and recurrence formula is constructed. In conjunction with finite element analysis (FEA) program, the reliability of an aero engine turbine disk under low cycle fatigue (LCF) condition has been analyzed. The results show the turbine disk is safety and the above reliability analysis methods are feasible.展开更多
large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion proces...large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion process is an effective means to realize higher accuracy and longer life. The low-cycle fatigue properties of LDITHSS are obtained by experiments, and the initiation and propagation of fatigue cracks are observed by scanning electron microscope(SEM). Based on the mechanical properties, surface microstructure and residual stress, the strengthening mechanism of cold extruded large diameter internal thread(LDIT) is discussed. The results show that new grains or sub-grains can be formed on the surface of LDIT due to grain segmentation and grain refinement during cold extrusion. The fibrous structures appear as elongated and streamlined along the normal direction of the tooth surface which leads to residual compressive stress on the extruded surface. The maximum tension stress of LDIT after cold extrusion is found to be 192.55 k N. Under low stress cycling, the yield stress on thread increases, the propagation rate of crack reduces, the fatigue life is thus improved significantly with decreasing surface grain diameter and the average fatigue life increases to 45.539×10~3 cycle when the maximum applied load decreases to 120 k N. The low cycle fatigue and strengthening mechanism of cold extruded LDIT revealed by this research has significant importance to promote application of internal thread by cold extrusion processing.展开更多
Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of ...Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of strain.±0.5 % to±1.5 %,the three processes of cyclic hardening,cyclic saturation and cyclic softening were observed.In the same amplitude of strain,the peak stress of the samples pre-treated by DSA is higher than that of solid-solu- tion and cold working pre-treatment,but no remarkable differences of the fatigue lives of them were found.TEM observation shows that the uniform and stable dislocation networks with high density form after DSA pre-treatment,which increases the cyclic peak stress.The cyclic softening results from the low dislocation density and elongated cell structure with low energy.展开更多
The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting e...The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting effect and damage mechanism were discussed in detail.The results show that under symmetric stress control,the forward ratcheting deformation is observed.Under asymmetric stress control,the ratcheting strain increases rapidly with mean stress and stress amplitude increasing.Under high stress amplitude,the influence of mean stress is more significant.In addition,by studying the variation of strain energy density,it is found that the stress amplitude mainly promotes the fatigue damage,while the mean stress leads to the ratcheting damage.In addition,fractographic observation shows that the crack initiates in the brittle metal compound at the interface,and the steel has higher resistance to crack propagation.Finally,the accuracy of life prediction model considering ratcheting effect is discussed in detail,and a high-precision life prediction model directly based on mean stress and stress amplitude is proposed.展开更多
Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to in...Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-AI-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-AI-Mn-Ce alloys were analyzed. The results show that the Mg-AI-Mn-Ce alloys under die-cast (F) and aged (T5) states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-AI-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-AI-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.展开更多
A study on the low-cycle fatigue(LCF)behavior of K 416 B alloy was conducted at 650℃.According to the results,the LCF behavior of K 416 B alloy at 650℃ is mainly manifested as elastic deformation and the fatigue lif...A study on the low-cycle fatigue(LCF)behavior of K 416 B alloy was conducted at 650℃.According to the results,the LCF behavior of K 416 B alloy at 650℃ is mainly manifested as elastic deformation and the fatigue life of the alloy is determined by the level of material strength.When tension-compression fatigue occurs,the deformation mechanism of the alloy is reflected in the form of dislocation slip,and the deformation dislocations are bowed out in the matrix by Orowan mechanism,which leads to a dislocation configuration similar to the Frawk-Reed source.At the late stage of low-cycle fatigue,the fatigue-induced cracks develop from the alloy surface.As fatigue test proceeds,it is possible for the cracks to continue development along the regions of eutectic and the bulk M 6 C carbide due to stress concentration,thus causing the alloy to show cleavage fracture.展开更多
Magnesium alloy Mg-3%Al-1%Zn (AZ31) billets prepared from equal channel angular pressing (ECAP) were utilized in low-cycle fatigue tests in order to investigate their fatigue life. Fully reversed strain-controlled...Magnesium alloy Mg-3%Al-1%Zn (AZ31) billets prepared from equal channel angular pressing (ECAP) were utilized in low-cycle fatigue tests in order to investigate their fatigue life. Fully reversed strain-controlled tension-compression fatigue tests were conducted at the frequency of 1 Hz in ambient air. The microstructures were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The hysteresis loops of the ECAP processed and conventionally extruded samples display obviously different shapes in the total strain amplitude range from 0.2% to 0.6%. Accordingly, the low cycle fatigue lives of ECAP processed samples are found to be longer than those of extruded samples, which can be attributed to the different in the hysteresis energy incorporating tensile strain energy.展开更多
Low cycle fatigue tests on nickel base superalloy GH536 were performed at 600, 700 and 800℃. The strain-life and cyclic stress-strain relationship were given at various temperatures. The change in fatigue life beha...Low cycle fatigue tests on nickel base superalloy GH536 were performed at 600, 700 and 800℃. The strain-life and cyclic stress-strain relationship were given at various temperatures. The change in fatigue life behavior and fatigue parameters with tem- perature increasing was discussed. At low and intermediate total strain amplitudes, the fatigue life was found to decrease with increasing temperature.展开更多
文摘Recently,a description on a practicability of the Wöhler Curve Method for low-cycle fatigue of metals was given by the author.By the description and the low cycle fatigue test data of 16 MnR steel,it is important to show that,for low cycle fatigue of metals,such a way that a stress-based intensity parameter calculated by the linear-elastic analysis is taken to be a stress intensity parameter,S,to establish a relationship between the stress intensity parameter,S,and the fatigue life,N,is practicable.In this paper,many metallic materials from the literature are given to show that the Wöhler Curve Method is well suitable for low-cycle fatigue analysis of metals.
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.
基金Project(2011CB606305)supported by the National Basic Research Program of ChinaProject(IRT0805)supported by the Cheung Kong Scholars Innovation Research Team Program of Ministry of Education,China
文摘Low cycle fatigue (LCF) behavior of laser melting deposited (LMD) TC18 titanium alloy was studied at room temperature. Microstructure consisting of fine lamella-like primary α phase and transformed β matrix was obtained by double annealed treatment, and inhomogeneous grain boundaryαphase was detected. Fatigue fracture surfaces and longitudinal sections of LCF specimens were examined by optical microscopy and scanning electron microscopy. Results indicate that more than one crack initiation site can be detected on the LCF fracture surface. The fracture morphology of the secondary crack initiation site is different from that of the primary crack initiation site. When the crack grows along the grain boundaryαphase, continuous grain boundaryαphase leads to a straight propagating manner while discontinuous grain boundaryαphase gives rise to flexural propagating mode.
文摘Based on the failure model of building structural steels under earthquake loading, the low cycle fatigue test at constant strain, the stochastical fatigue test under real earthquake load spectrum and the structural fatigue test are carried out. The experimental results show that microalloying of V Ti and Nb can improve the anti-seismic propersties of steel bars. In the high strain and shori life range, both the static strength and ductility of steels are very important to increasing the low cycle fatigue resistance of steels.
基金Project(51575129) supported by the National Natural Science Foundation of ChinaProject(J15LA51) supported by Shandong Province Higher Educational Science and Technology Program,ChinaProject(2017T100238) supported by China Postdoctoral Science Foundation
文摘Nickel-based superalloys are easy to produce low cycle fatigue(LCF)damage when they are subjected to high temperature and mechanical stresses.Fatigue life prediction of nickel-based superalloys is of great importance for their reliable practical application.To investigate the effects of total strain and grain size on LCF behavior,the high temperature LCF tests were carried out for a nickel-based superalloy.The results show that the fatigue lives decreased with the increase of strain amplitude and grain size.A new LCF life prediction model was established considering the effect of grain size on fatigue life.Error analyses indicate that the prediction accuracy of the new LCF life model is higher than those of Manson-Coffin relationship and Ostergren energy method.
文摘The effects of recrystallization on low cycle fatigue behavior were investigated on directionally solidified Co-base superalloy DZ40M. Optical microscopy and SEM were used to examine the microstructure and fracture surface of the specimens. The mechanical testing results demonstrated that the low cycle fatigue property of DZ40M significantly decreased with the partial recrystallization. Fatigue cracks initiate near the carbides and the grain boundaries with slip-bands. Both the fatigue crack initiation and propagation can be accelerated with the occurrences of recrystallized grain boundaries.
基金Item Sponsored by Scientific Research Foundation for Returned Overseas Chinese Scholars ,State Education Ministry(2004176)
文摘The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the mierostrueture variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM and XRD, the modality of carbides and the full width half-maximum (FWHM) of martensite (211) [M(211)] of Xray diffraction spectrum in fatigue specimen were studied. The results showed that the cyclic stress response behav ior generally showed an initial exponential softening for the first few cycles, followed by a gradual softening without cyclic softening saturation. The fatigue behavior of the steel is closely related to the hardness level. The hardness diminution and the variation of half-width M(211) are remarkably influenced by the interaction between the cyclic plastic deformation and the thermal loading when the fatigue temperature exceeds the tempering temperature of the steel.
基金the National Basic Research Program of China(No.2013CB632205).
文摘Low cycle fatigue behavior of extruded AZ80 magnesium alloy was investigated under uniaxial tension-compression at different strain amplitudes and strain rates.The results show that the extruded AZ80 magnesium alloy exhibits cyclic hardening at strain amplitudes ranging from 0.4%to 1.0%,the asymmetry of hysteresis loops becomes increasingly obvious when the strain amplitude increases.Higher strain rates correspond to higher stress amplitudes,high mean stresses and short fatigue life.{10–12}extension twins play a role in the cyclic deformation under higher strain amplitudes(0.8%,1.0%).The relationship between total strain energy density and fatigue life can be described by the modified Morrow model.The effect of strain rate on the fatigue life can also be predicted by the model.
基金supported by the National Natural Science Foundation of China(No.50371042).
文摘The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃.
基金supported by the Seoul Research and Business Development Program(10555)the Fundamental R&D Program for Core Technology of Materials Funded by the Korean Ministry of Knowledge Economy Through Research Institute of AdvanceMaterials
文摘The low cycle fatigue(LCF)properties of as-extruded AZ31 Mg alloy were investigated under total strain amplitudes in the range of 0.4%-1.2%with strain rate of 1×10- 2s -1.Due to the twinning effect in compression during loading and the detwinning effect during unloading,the alloy showed an asymmetric hysteresis loop.The cyclic stress response exhibited cyclic hardening at high total strain amplitudes.The cyclic deformation behaviors were discussed using the Coffin-Manson plot,which divided the plastic strain amplitudes into the tension side and the compression side.Through the LCF tests that were started from either tension or compression under a total strain amplitude of 1.0%,the interaction between the twinning effect and dislocation was analyzed.The twinning effect during the LCF test and the variation of the dislocation density were investigated using optical microscopy and transmission electron microscopy,respectively.
文摘The effects of hydrogen atoms on behaviour of low cycle fatigue of 2.25Cr-1Mo steel have been investigated in present work. The results indicate that the cyclic softening rate and low cycle fatigue life are respectively increased and reduced remarkably by hydrogen atoms. In addition, hydrogen atoms make the original stress amplitude of low cycle fatigue increase, which is because of the drag effect of hydrogen atoms on the moving dislocations. Analyses using electron microscopy show that hydrogen atoms accelerate crack initiation of low cycle fatigue from inclusion and transfer the source of low cycle fatigue crack from the surface of specimen to the inclusion, which results in the marked decrease of low cycle fatigue life. The increase of cyclic softening rate for hydrogen charged specimen is due to hydrogen atoms accelerating the initiating and growing of microvoids from the secondary phase particles in the steel. The reducing of the drag effect of hydrogen atoms on moving dislocations is also helpful to the increase of the cyclic softening rate.
文摘The cyclic stress response and lowcycle fatigue life for wrought nickelbased superalloy GH4049 were investigated in the temperature range from 500 to 800 The relationship between the strain amplitude and the number of stress reversals was given. The behavior of cyclic hardening was observed for higher strain amplitudes at all testing temperatures and the lowcycle fatigue life generally decreased with increasing testing temperature for the same strain range. In addition, fracture surfaces of the fatigued samples were examined by using a scanning electron microscope.
基金Supports provided by Aviation Basic Science Foundation(00B53010)Aerospace Science Foundation(N3CH0502)Shaanxi Province Natural Science Foundation(N3CS0501)are gratefully appreciated.
文摘Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, and the reliability analysis method based on load-life interference model and recurrence formula is constructed. In conjunction with finite element analysis (FEA) program, the reliability of an aero engine turbine disk under low cycle fatigue (LCF) condition has been analyzed. The results show the turbine disk is safety and the above reliability analysis methods are feasible.
基金Supported by National Natural Science Foundation of China(Grant No.51372216)Jiangsu Science and Technology Plan Project of China(Grant No.BE2015113)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.BKJB460016)
文摘large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion process is an effective means to realize higher accuracy and longer life. The low-cycle fatigue properties of LDITHSS are obtained by experiments, and the initiation and propagation of fatigue cracks are observed by scanning electron microscope(SEM). Based on the mechanical properties, surface microstructure and residual stress, the strengthening mechanism of cold extruded large diameter internal thread(LDIT) is discussed. The results show that new grains or sub-grains can be formed on the surface of LDIT due to grain segmentation and grain refinement during cold extrusion. The fibrous structures appear as elongated and streamlined along the normal direction of the tooth surface which leads to residual compressive stress on the extruded surface. The maximum tension stress of LDIT after cold extrusion is found to be 192.55 k N. Under low stress cycling, the yield stress on thread increases, the propagation rate of crack reduces, the fatigue life is thus improved significantly with decreasing surface grain diameter and the average fatigue life increases to 45.539×10~3 cycle when the maximum applied load decreases to 120 k N. The low cycle fatigue and strengthening mechanism of cold extruded LDIT revealed by this research has significant importance to promote application of internal thread by cold extrusion processing.
文摘Studies were made of the symmetric tensile-compressive low cycle fatigue behaviour and the influence of dynamic strain aging(DSA)pre-treatment of 18-8 austenitic stainless steel. Within the testing amplitude range of strain.±0.5 % to±1.5 %,the three processes of cyclic hardening,cyclic saturation and cyclic softening were observed.In the same amplitude of strain,the peak stress of the samples pre-treated by DSA is higher than that of solid-solu- tion and cold working pre-treatment,but no remarkable differences of the fatigue lives of them were found.TEM observation shows that the uniform and stable dislocation networks with high density form after DSA pre-treatment,which increases the cyclic peak stress.The cyclic softening results from the low dislocation density and elongated cell structure with low energy.
基金the financial support from the National Natural Science Foundation of China(Nos.51975271,51675260,51475223)the Starting Research Fund of Nanjing Vocational University of Industry Technology,China(No.YK20-14-05)。
文摘The low cycle fatigue behavior of zirconium−titanium−steel composite plate under symmetrical and asymmetric stress control was studied.The effects of mean stress and stress amplitude on cyclic deformation,ratcheting effect and damage mechanism were discussed in detail.The results show that under symmetric stress control,the forward ratcheting deformation is observed.Under asymmetric stress control,the ratcheting strain increases rapidly with mean stress and stress amplitude increasing.Under high stress amplitude,the influence of mean stress is more significant.In addition,by studying the variation of strain energy density,it is found that the stress amplitude mainly promotes the fatigue damage,while the mean stress leads to the ratcheting damage.In addition,fractographic observation shows that the crack initiates in the brittle metal compound at the interface,and the steel has higher resistance to crack propagation.Finally,the accuracy of life prediction model considering ratcheting effect is discussed in detail,and a high-precision life prediction model directly based on mean stress and stress amplitude is proposed.
基金financially supported by the Science and Technology Research Project of Liaoning Province Education Department(L2012038)
文摘Fatigue failure is a main failure mode for magnesium and other alloys. It is beneficial for fatigue design and fatigue life improvement to investigate the low cycle fatigue behavior of magnesium alloys. In order to investigate the low cycle fatigue behavior of die cast Mg-AI-Mn-Ce magnesium alloy, the strain controlled fatigue experiments were performed at room temperature and fatigue fracture surfaces of specimens were observed with scanning election microscopy for the alloys under die-cast and aged states. Cyclic stress response curves, strain amplitude versus reversals to failure curve, total strain amplitude versus fatigue life curves and cyclic stress-strain curves of Mg-AI-Mn-Ce alloys were analyzed. The results show that the Mg-AI-Mn-Ce alloys under die-cast (F) and aged (T5) states exhibit cyclic strain hardening under the applied total strain amplitudes, and aging treatment could greatly increase the cyclic stress amplitudes of die cast Mg-AI-Mn-Ce alloys. The relationships between the plastic strain amplitude, the elastic strain amplitude and reversals to failure of Mg-AI-Mn-Ce magnesium alloy under different treatment states could be described by Coffin-Manson and Basquin equations, respectively. Observations on the fatigue fracture surface of specimens reveal that the fatigue cracks initiate on the surface of specimens and propagate transgranularly.
基金Projects(51701212,51771191,51971214)supported by the National Natural Science Foundation of ChinaProject(2019-MS-336)supported by the Liaoning Provincial Natural Science Foundation,China。
文摘A study on the low-cycle fatigue(LCF)behavior of K 416 B alloy was conducted at 650℃.According to the results,the LCF behavior of K 416 B alloy at 650℃ is mainly manifested as elastic deformation and the fatigue life of the alloy is determined by the level of material strength.When tension-compression fatigue occurs,the deformation mechanism of the alloy is reflected in the form of dislocation slip,and the deformation dislocations are bowed out in the matrix by Orowan mechanism,which leads to a dislocation configuration similar to the Frawk-Reed source.At the late stage of low-cycle fatigue,the fatigue-induced cracks develop from the alloy surface.As fatigue test proceeds,it is possible for the cracks to continue development along the regions of eutectic and the bulk M 6 C carbide due to stress concentration,thus causing the alloy to show cleavage fracture.
基金Funded by the National Natural Science Foundation of China (No 50901042)the NUST Research Funding(No.2011YBXM156)
文摘Magnesium alloy Mg-3%Al-1%Zn (AZ31) billets prepared from equal channel angular pressing (ECAP) were utilized in low-cycle fatigue tests in order to investigate their fatigue life. Fully reversed strain-controlled tension-compression fatigue tests were conducted at the frequency of 1 Hz in ambient air. The microstructures were examined by optical microscopy (OM) and scanning electron microscopy (SEM). The hysteresis loops of the ECAP processed and conventionally extruded samples display obviously different shapes in the total strain amplitude range from 0.2% to 0.6%. Accordingly, the low cycle fatigue lives of ECAP processed samples are found to be longer than those of extruded samples, which can be attributed to the different in the hysteresis energy incorporating tensile strain energy.
文摘Low cycle fatigue tests on nickel base superalloy GH536 were performed at 600, 700 and 800℃. The strain-life and cyclic stress-strain relationship were given at various temperatures. The change in fatigue life behavior and fatigue parameters with tem- perature increasing was discussed. At low and intermediate total strain amplitudes, the fatigue life was found to decrease with increasing temperature.