The long term existence of a low-head dam in the river channel significantly affects river geomorphology and river ecosystem. Because more and more low-head dam structures have deteriorated in recent years, the attent...The long term existence of a low-head dam in the river channel significantly affects river geomorphology and river ecosystem. Because more and more low-head dam structures have deteriorated in recent years, the attention for low-head dam removal is increasing as one of alternatives for river restoration. Thus, this study intends to investigate the impacts of low-head dam removal on river geomorphology and riparian vegetation with developing a quantitative method to predict the changes of river morphology as well as invasion, growth, expansion and destruction of riparian vegetation after a low-head dam removal. To verify the numerical simulation model, the low-head dam removal case in Gongreung River was employed with investigation of low-head dam removal responses on river geomorphology and riparian vegetation. Following the low-head dam removal, the results of monitoring and numerical simulation indicated that new sand bars has formed as well as increasing the extent of existing sand bars in the upstream of the low-head dam. The sand bars have been colonized in a year after the low-head dam removal by grass type plants. After a decade to several decades, the riparian vegetation in sand bars often developed to tree type plants in several low-head dam removal cases. As other cases, Gongreung River also showed the growth of tree type plants in 5 years after the removal.展开更多
The long-term existence of dam structures significantly modified the river channel. In accordance with a drastic increase of low-head dams under consideration for removal in recent years, it is important to predict th...The long-term existence of dam structures significantly modified the river channel. In accordance with a drastic increase of low-head dams under consideration for removal in recent years, it is important to predict the effects of low-head dam removal from the modified river channel by the low-head dam construction. This study intends to investigate the long-term channel evolution process following low-head construction and removal and to find out the influential parameters (sediment diameter, river bed slope, dam height) for those channel evolution by two-dimensional numerical simulation model. Following the low-head dam construction, sediment deposition rates in upstream of the low-head dam are varied with the influential parameters. The sediment deposition rates and sandbar formation with riparian vegetation settlement on sandbars have significantly affected for channel evolution following low-head dam removal. Especially the knickpoint formation and the types of vegetation (grass type and tree type) on the sandbars are critical factors for channel evolution following low-head dam removal. Through the numerical simulation results of low-head dam construction (50 years) and low-head dam removal (50 years), it is identified that the modified river channel by low-head dam may not be easily restored to pre-dam conditions following its removal especially in river geomorphology and riparian vegetation. Consequently, this study found that the reversibility following low-head dam construction and removal depends on the sediment deposition rates in upstream of the low-head dam.展开更多
Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of...Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli imitator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 x 10~8 to 4.9× 10~5 at the dosage of 5.2×1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.展开更多
文摘The long term existence of a low-head dam in the river channel significantly affects river geomorphology and river ecosystem. Because more and more low-head dam structures have deteriorated in recent years, the attention for low-head dam removal is increasing as one of alternatives for river restoration. Thus, this study intends to investigate the impacts of low-head dam removal on river geomorphology and riparian vegetation with developing a quantitative method to predict the changes of river morphology as well as invasion, growth, expansion and destruction of riparian vegetation after a low-head dam removal. To verify the numerical simulation model, the low-head dam removal case in Gongreung River was employed with investigation of low-head dam removal responses on river geomorphology and riparian vegetation. Following the low-head dam removal, the results of monitoring and numerical simulation indicated that new sand bars has formed as well as increasing the extent of existing sand bars in the upstream of the low-head dam. The sand bars have been colonized in a year after the low-head dam removal by grass type plants. After a decade to several decades, the riparian vegetation in sand bars often developed to tree type plants in several low-head dam removal cases. As other cases, Gongreung River also showed the growth of tree type plants in 5 years after the removal.
文摘The long-term existence of dam structures significantly modified the river channel. In accordance with a drastic increase of low-head dams under consideration for removal in recent years, it is important to predict the effects of low-head dam removal from the modified river channel by the low-head dam construction. This study intends to investigate the long-term channel evolution process following low-head construction and removal and to find out the influential parameters (sediment diameter, river bed slope, dam height) for those channel evolution by two-dimensional numerical simulation model. Following the low-head dam construction, sediment deposition rates in upstream of the low-head dam are varied with the influential parameters. The sediment deposition rates and sandbar formation with riparian vegetation settlement on sandbars have significantly affected for channel evolution following low-head dam removal. Especially the knickpoint formation and the types of vegetation (grass type and tree type) on the sandbars are critical factors for channel evolution following low-head dam removal. Through the numerical simulation results of low-head dam construction (50 years) and low-head dam removal (50 years), it is identified that the modified river channel by low-head dam may not be easily restored to pre-dam conditions following its removal especially in river geomorphology and riparian vegetation. Consequently, this study found that the reversibility following low-head dam construction and removal depends on the sediment deposition rates in upstream of the low-head dam.
基金The project supported by the National Nature Science Foundation of China (No. 19890300)
文摘Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli imitator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 x 10~8 to 4.9× 10~5 at the dosage of 5.2×1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.