A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). ...A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). The measurements of the film refractive index reveal that the optical frequency dielectric constant (n^2) of the film is almost constant as a function of air exposure time, however, with increasing annealing temperature, the value of n^2 for the film decreases. Possible mechanisms are discussed in detail. The analysis of SIMS profiles for the metal-insulator-silicon structures reveal that in the Al/a-C : F/Si structure,the annealing causes a more rapid diffusion of F in AI in comparison with C, but there is no obvious difference in Si. In addition, no recognizable verge exists between SiCOF and a-C : F films,and the SiCOF film acts as a barrier against the diffusion of carbon into the aluminum layer.展开更多
文摘A novel double-layer film of SiCOF/a-C : F with a low dielectric constant is deposited using a PECVD system. The chemical structure of the film is characterized with Fourier transform infrared spectroscopy (FTIR). The measurements of the film refractive index reveal that the optical frequency dielectric constant (n^2) of the film is almost constant as a function of air exposure time, however, with increasing annealing temperature, the value of n^2 for the film decreases. Possible mechanisms are discussed in detail. The analysis of SIMS profiles for the metal-insulator-silicon structures reveal that in the Al/a-C : F/Si structure,the annealing causes a more rapid diffusion of F in AI in comparison with C, but there is no obvious difference in Si. In addition, no recognizable verge exists between SiCOF and a-C : F films,and the SiCOF film acts as a barrier against the diffusion of carbon into the aluminum layer.