Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a...Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.展开更多
The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like t...The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.展开更多
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe...Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.展开更多
In wireless sensor networks(WSNs), due to the limited battery power of the sensor nodes, the communication energy consumption is the main factor to affect the lifetime of the networks. A reasonable design of the commu...In wireless sensor networks(WSNs), due to the limited battery power of the sensor nodes, the communication energy consumption is the main factor to affect the lifetime of the networks. A reasonable design of the communication protocol can effectively reduce the energy consumption of the network system. Based on low-energy adaptive clustering hierarchy(LEACH), an improved LEACH protocol in WSNs is proposed. In order to optimize the cluster head(CH) election in the cluster setup phase, the improved LEACH takes into account a number of factors, including energy consumption of communication between nodes, remaining energy of the nodes,and the distance between nodes and base station(BS). In the steady phase, one-hop routing and multiple-hop routing are combined to transmit data between CHs to improve energy efficiency. The forward CH is selected as relay node according to the values of path cost. The simulation results show that the proposed algorithm performs better in balancing network energy consumption, and it can effectively improve the data transmission efficiency and prolong the network lifetime, as compared with LEACH, LEACH-C(LEACH-centralized) and NDAPSO-C(an adaptive clustering protocol based on improved particle swarm optimization) algorithms.展开更多
Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. Th...Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. The protocol improves the way of the nodes distribution at random. The terminal nodes which have not been a two-level cluster head in the cluster can compete with the principle of equivalent possibility, and on the basis of the rest energy of nodes the two-level cluster head is selected at last. The single hop within the cluster and single hop or multiple hops between clusters are used. Simulation experiment results show that the performance of the two-level linear clustering protocol applied to the Hexi corridor agricultural field is superior to that of the LEACH protocol in the survival time of network nodes, the ratio of success, and the remaining energy of network nodes.展开更多
In the paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via clusterhead...In the paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via clusterhead) for further processing. The key problem focuses on how to reduce the power consumption of wireless microsensor networks. The core includes the energy efficiency of clusterheads and that of cluster members. We first extend low-energy adaptive clustering hierarchy (LEACH)'s stochastic clusterhead selection algorithm by a factor with distance-based deterministic component (LEACH-D) to reduce energy consumption for energy efficiency of clusterhead. And the cost function is proposed so that it balances the energy consumption of nodes for energy efficiency of cluster member. Simulation results show that our modified scheme can extend the network life around up to 40% before first node dies. Through both theoretical analysis and numerical results, it is shown that the proposed algorithm achieves better performance than the existing representative methods.展开更多
文章基于物联网下的低功耗无线传感器网络,重点研究一种优化的无线传感器网络通信协议,即基于K-means聚类的低能量自适应聚类层次协议(Low Energy Adaptive Clustering Hierarchy,LEACH)。通过对无线传感器网络结构的深入研究,提出一种...文章基于物联网下的低功耗无线传感器网络,重点研究一种优化的无线传感器网络通信协议,即基于K-means聚类的低能量自适应聚类层次协议(Low Energy Adaptive Clustering Hierarchy,LEACH)。通过对无线传感器网络结构的深入研究,提出一种新的聚类优化方法,以降低网络的总体能耗,并提高能耗均衡性。采用MATLAB进行仿真实验,验证所提优化方法的性能。实验结果表明,所提优化方法在总能耗、簇内能耗均衡性和数据传输成功率等方面均表现良好。为全面评估优化方法的性能,开展8次重复实验,通过分析平均值和标准差,验证实验结果的一致性和稳定性。展开更多
Routing strategies and security issues are the greatest challenges in Wireless Sensor Network(WSN).Cluster-based routing Low Energy adaptive Clustering Hierarchy(LEACH)decreases power consumption and increases net-wor...Routing strategies and security issues are the greatest challenges in Wireless Sensor Network(WSN).Cluster-based routing Low Energy adaptive Clustering Hierarchy(LEACH)decreases power consumption and increases net-work lifetime considerably.Securing WSN is a challenging issue faced by researchers.Trust systems are very helpful in detecting interfering nodes in WSN.Researchers have successfully applied Nature-inspired Metaheuristics Optimization Algorithms as a decision-making factor to derive an improved and effective solution for a real-time optimization problem.The metaheuristic Elephant Herding Optimizations(EHO)algorithm is formulated based on ele-phant herding in their clans.EHO considers two herding behaviors to solve and enhance optimization problem.Based on Elephant Herd Optimization,a trust-based security method is built in this work.The proposed routing selects routes to destination based on the trust values,thus,finding optimal secure routes for transmitting data.Experimental results have demonstrated the effectiveness of the proposed EHO based routing.The Average Packet Loss Rate of the proposed Trust Elephant Herd Optimization performs better by 35.42%,by 1.45%,and by 31.94%than LEACH,Elephant Herd Optimization,and Trust LEACH,respec-tively at Number of Nodes 3000.As the proposed routing is efficient in selecting secure routes,the average packet loss rate is significantly reduced,improving the network’s performance.It is also observed that the lifetime of the network is enhanced with the proposed Trust Elephant Herd Optimization.展开更多
针对在LEACH(low energy adaptive clustering hierarchy)协议中,所有节点均通过一跳通信将数据传输到簇头节点使簇头能耗太大而过快衰竭死亡的问题,提出了一种新的分簇的无线传感器网络多跳节能路由协议.簇头之间采用多跳方式将数据传...针对在LEACH(low energy adaptive clustering hierarchy)协议中,所有节点均通过一跳通信将数据传输到簇头节点使簇头能耗太大而过快衰竭死亡的问题,提出了一种新的分簇的无线传感器网络多跳节能路由协议.簇头之间采用多跳方式将数据传送到基站,避免了单跳通信簇头节点能量消耗过大的问题.利用NS-2(networksimulator-version 2)的仿真结果表明该算法优于LEACH,能有效地降低节点的能耗,延长网络生命周期.展开更多
针对LEACH(low energy adaptive clustering hierarchy)算法以随机概率轮选簇头,存在簇头分布不均匀、簇头数量波动大以及簇头选取时未考虑节点剩余能量等问题,提出簇头半径自适应层次型路由算法(cluster-head range adaptive adjustmen...针对LEACH(low energy adaptive clustering hierarchy)算法以随机概率轮选簇头,存在簇头分布不均匀、簇头数量波动大以及簇头选取时未考虑节点剩余能量等问题,提出簇头半径自适应层次型路由算法(cluster-head range adaptive adjustment clus-tering routing,CRACR),引入节点剩余能量作为权重因子选取簇头,采用自适应调节机制控制簇头广播消息的广播半径大小,根据节点的位置和剩余能量分配时隙。通过仿真实验,结果表明CRACR算法的第1个节点死亡"回合"数比LEACH提高了55%以上,节能性能得到了明显的提高。展开更多
文摘Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.
文摘The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.
文摘Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.
基金the National Natural Science Foundation of China(No.61673259)the International Exchanges and Cooperation Projects of Shanghai Science and Technology Committee(No.15220721800)
文摘In wireless sensor networks(WSNs), due to the limited battery power of the sensor nodes, the communication energy consumption is the main factor to affect the lifetime of the networks. A reasonable design of the communication protocol can effectively reduce the energy consumption of the network system. Based on low-energy adaptive clustering hierarchy(LEACH), an improved LEACH protocol in WSNs is proposed. In order to optimize the cluster head(CH) election in the cluster setup phase, the improved LEACH takes into account a number of factors, including energy consumption of communication between nodes, remaining energy of the nodes,and the distance between nodes and base station(BS). In the steady phase, one-hop routing and multiple-hop routing are combined to transmit data between CHs to improve energy efficiency. The forward CH is selected as relay node according to the values of path cost. The simulation results show that the proposed algorithm performs better in balancing network energy consumption, and it can effectively improve the data transmission efficiency and prolong the network lifetime, as compared with LEACH, LEACH-C(LEACH-centralized) and NDAPSO-C(an adaptive clustering protocol based on improved particle swarm optimization) algorithms.
基金supported by the Foundation Projects in Gansu Province Department of Education under Grant No.2015A-163
文摘Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. The protocol improves the way of the nodes distribution at random. The terminal nodes which have not been a two-level cluster head in the cluster can compete with the principle of equivalent possibility, and on the basis of the rest energy of nodes the two-level cluster head is selected at last. The single hop within the cluster and single hop or multiple hops between clusters are used. Simulation experiment results show that the performance of the two-level linear clustering protocol applied to the Hexi corridor agricultural field is superior to that of the LEACH protocol in the survival time of network nodes, the ratio of success, and the remaining energy of network nodes.
基金the Science and Technology Research Project of Chongqing Municipal Education Commission of China (080526)
文摘In the paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via clusterhead) for further processing. The key problem focuses on how to reduce the power consumption of wireless microsensor networks. The core includes the energy efficiency of clusterheads and that of cluster members. We first extend low-energy adaptive clustering hierarchy (LEACH)'s stochastic clusterhead selection algorithm by a factor with distance-based deterministic component (LEACH-D) to reduce energy consumption for energy efficiency of clusterhead. And the cost function is proposed so that it balances the energy consumption of nodes for energy efficiency of cluster member. Simulation results show that our modified scheme can extend the network life around up to 40% before first node dies. Through both theoretical analysis and numerical results, it is shown that the proposed algorithm achieves better performance than the existing representative methods.
文摘文章基于物联网下的低功耗无线传感器网络,重点研究一种优化的无线传感器网络通信协议,即基于K-means聚类的低能量自适应聚类层次协议(Low Energy Adaptive Clustering Hierarchy,LEACH)。通过对无线传感器网络结构的深入研究,提出一种新的聚类优化方法,以降低网络的总体能耗,并提高能耗均衡性。采用MATLAB进行仿真实验,验证所提优化方法的性能。实验结果表明,所提优化方法在总能耗、簇内能耗均衡性和数据传输成功率等方面均表现良好。为全面评估优化方法的性能,开展8次重复实验,通过分析平均值和标准差,验证实验结果的一致性和稳定性。
文摘Routing strategies and security issues are the greatest challenges in Wireless Sensor Network(WSN).Cluster-based routing Low Energy adaptive Clustering Hierarchy(LEACH)decreases power consumption and increases net-work lifetime considerably.Securing WSN is a challenging issue faced by researchers.Trust systems are very helpful in detecting interfering nodes in WSN.Researchers have successfully applied Nature-inspired Metaheuristics Optimization Algorithms as a decision-making factor to derive an improved and effective solution for a real-time optimization problem.The metaheuristic Elephant Herding Optimizations(EHO)algorithm is formulated based on ele-phant herding in their clans.EHO considers two herding behaviors to solve and enhance optimization problem.Based on Elephant Herd Optimization,a trust-based security method is built in this work.The proposed routing selects routes to destination based on the trust values,thus,finding optimal secure routes for transmitting data.Experimental results have demonstrated the effectiveness of the proposed EHO based routing.The Average Packet Loss Rate of the proposed Trust Elephant Herd Optimization performs better by 35.42%,by 1.45%,and by 31.94%than LEACH,Elephant Herd Optimization,and Trust LEACH,respec-tively at Number of Nodes 3000.As the proposed routing is efficient in selecting secure routes,the average packet loss rate is significantly reduced,improving the network’s performance.It is also observed that the lifetime of the network is enhanced with the proposed Trust Elephant Herd Optimization.
文摘针对LEACH(low energy adaptive clustering hierarchy)算法以随机概率轮选簇头,存在簇头分布不均匀、簇头数量波动大以及簇头选取时未考虑节点剩余能量等问题,提出簇头半径自适应层次型路由算法(cluster-head range adaptive adjustment clus-tering routing,CRACR),引入节点剩余能量作为权重因子选取簇头,采用自适应调节机制控制簇头广播消息的广播半径大小,根据节点的位置和剩余能量分配时隙。通过仿真实验,结果表明CRACR算法的第1个节点死亡"回合"数比LEACH提高了55%以上,节能性能得到了明显的提高。