Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a...Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.展开更多
Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embe...Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.展开更多
Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. Th...Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. The protocol improves the way of the nodes distribution at random. The terminal nodes which have not been a two-level cluster head in the cluster can compete with the principle of equivalent possibility, and on the basis of the rest energy of nodes the two-level cluster head is selected at last. The single hop within the cluster and single hop or multiple hops between clusters are used. Simulation experiment results show that the performance of the two-level linear clustering protocol applied to the Hexi corridor agricultural field is superior to that of the LEACH protocol in the survival time of network nodes, the ratio of success, and the remaining energy of network nodes.展开更多
Key management is a fundamental security service in wireless sensor networks. The communication security problems for these networks are exacerbated by the limited power and energy of the sensor devices. In this paper...Key management is a fundamental security service in wireless sensor networks. The communication security problems for these networks are exacerbated by the limited power and energy of the sensor devices. In this paper, we describe the design and implementation of an efficient key management scheme based on low energy adaptive clustering hierarchy(LEACH) for wireless sensor networks. The design of the protocol is motivated by the observation that many sensor nodes in the network play different roles. The paper presents different keys are set to the sensors for meeting different transmitting messages and variable security requirements. Simulation results show that our key management protocol based-on LEACH can achieve better performance. The energy consumption overhead introduced is remarkably low compared with the original Kerberos schemes.展开更多
Routing strategies and security issues are the greatest challenges in Wireless Sensor Network(WSN).Cluster-based routing Low Energy adaptive Clustering Hierarchy(LEACH)decreases power consumption and increases net-wor...Routing strategies and security issues are the greatest challenges in Wireless Sensor Network(WSN).Cluster-based routing Low Energy adaptive Clustering Hierarchy(LEACH)decreases power consumption and increases net-work lifetime considerably.Securing WSN is a challenging issue faced by researchers.Trust systems are very helpful in detecting interfering nodes in WSN.Researchers have successfully applied Nature-inspired Metaheuristics Optimization Algorithms as a decision-making factor to derive an improved and effective solution for a real-time optimization problem.The metaheuristic Elephant Herding Optimizations(EHO)algorithm is formulated based on ele-phant herding in their clans.EHO considers two herding behaviors to solve and enhance optimization problem.Based on Elephant Herd Optimization,a trust-based security method is built in this work.The proposed routing selects routes to destination based on the trust values,thus,finding optimal secure routes for transmitting data.Experimental results have demonstrated the effectiveness of the proposed EHO based routing.The Average Packet Loss Rate of the proposed Trust Elephant Herd Optimization performs better by 35.42%,by 1.45%,and by 31.94%than LEACH,Elephant Herd Optimization,and Trust LEACH,respec-tively at Number of Nodes 3000.As the proposed routing is efficient in selecting secure routes,the average packet loss rate is significantly reduced,improving the network’s performance.It is also observed that the lifetime of the network is enhanced with the proposed Trust Elephant Herd Optimization.展开更多
文摘Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner.
文摘Numerous wireless networks have emerged that can be used for short communication ranges where the infrastructure-based networks may fail because of their installation and cost.One of them is a sensor network with embedded sensors working as the primary nodes,termed Wireless Sensor Networks(WSNs),in which numerous sensors are connected to at least one Base Station(BS).These sensors gather information from the environment and transmit it to a BS or gathering location.WSNs have several challenges,including throughput,energy usage,and network lifetime concerns.Different strategies have been applied to get over these restrictions.Clustering may,therefore,be thought of as the best way to solve such issues.Consequently,it is crucial to analyze effective Cluster Head(CH)selection to maximize efficiency throughput,extend the network lifetime,and minimize energy consumption.This paper proposed an Accelerated Particle Swarm Optimization(APSO)algorithm based on the Low Energy Adaptive Clustering Hierarchy(LEACH),Neighboring Based Energy Efficient Routing(NBEER),Cooperative Energy Efficient Routing(CEER),and Cooperative Relay Neighboring Based Energy Efficient Routing(CR-NBEER)techniques.With the help of APSO in the implementation of the WSN,the main methodology of this article has taken place.The simulation findings in this study demonstrated that the suggested approach uses less energy,with respective energy consumption ranges of 0.1441 to 0.013 for 5 CH,1.003 to 0.0521 for 10 CH,and 0.1734 to 0.0911 for 15 CH.The sending packets ratio was also raised for all three CH selection scenarios,increasing from 659 to 1730.The number of dead nodes likewise dropped for the given combination,falling between 71 and 66.The network lifetime was deemed to have risen based on the results found.A hybrid with a few valuable parameters can further improve the suggested APSO-based protocol.Similar to underwater,WSN can make use of the proposed protocol.The overall results have been evaluated and compared with the existing approaches of sensor networks.
基金supported by the Foundation Projects in Gansu Province Department of Education under Grant No.2015A-163
文摘Aiming at the defects of the nodes in the low energy adaptive clustering hierarchy (LEACH) protocol, such as high energy consumption and uneven energy consumption, a two-level linear clustering protocol is built. The protocol improves the way of the nodes distribution at random. The terminal nodes which have not been a two-level cluster head in the cluster can compete with the principle of equivalent possibility, and on the basis of the rest energy of nodes the two-level cluster head is selected at last. The single hop within the cluster and single hop or multiple hops between clusters are used. Simulation experiment results show that the performance of the two-level linear clustering protocol applied to the Hexi corridor agricultural field is superior to that of the LEACH protocol in the survival time of network nodes, the ratio of success, and the remaining energy of network nodes.
基金Supported by the Natural Science Foundation ofHunan Province (jj587402)
文摘Key management is a fundamental security service in wireless sensor networks. The communication security problems for these networks are exacerbated by the limited power and energy of the sensor devices. In this paper, we describe the design and implementation of an efficient key management scheme based on low energy adaptive clustering hierarchy(LEACH) for wireless sensor networks. The design of the protocol is motivated by the observation that many sensor nodes in the network play different roles. The paper presents different keys are set to the sensors for meeting different transmitting messages and variable security requirements. Simulation results show that our key management protocol based-on LEACH can achieve better performance. The energy consumption overhead introduced is remarkably low compared with the original Kerberos schemes.
文摘Routing strategies and security issues are the greatest challenges in Wireless Sensor Network(WSN).Cluster-based routing Low Energy adaptive Clustering Hierarchy(LEACH)decreases power consumption and increases net-work lifetime considerably.Securing WSN is a challenging issue faced by researchers.Trust systems are very helpful in detecting interfering nodes in WSN.Researchers have successfully applied Nature-inspired Metaheuristics Optimization Algorithms as a decision-making factor to derive an improved and effective solution for a real-time optimization problem.The metaheuristic Elephant Herding Optimizations(EHO)algorithm is formulated based on ele-phant herding in their clans.EHO considers two herding behaviors to solve and enhance optimization problem.Based on Elephant Herd Optimization,a trust-based security method is built in this work.The proposed routing selects routes to destination based on the trust values,thus,finding optimal secure routes for transmitting data.Experimental results have demonstrated the effectiveness of the proposed EHO based routing.The Average Packet Loss Rate of the proposed Trust Elephant Herd Optimization performs better by 35.42%,by 1.45%,and by 31.94%than LEACH,Elephant Herd Optimization,and Trust LEACH,respec-tively at Number of Nodes 3000.As the proposed routing is efficient in selecting secure routes,the average packet loss rate is significantly reduced,improving the network’s performance.It is also observed that the lifetime of the network is enhanced with the proposed Trust Elephant Herd Optimization.