This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is...This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is vMidated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM.展开更多
Two-photon luminescence with near-infrared(NIR)excitation of upconversion nanoparticles(NPs)is of great importance in biological imaging due to deep penetration in high-scattering tissues,low auto-luminescence and goo...Two-photon luminescence with near-infrared(NIR)excitation of upconversion nanoparticles(NPs)is of great importance in biological imaging due to deep penetration in high-scattering tissues,low auto-luminescence and good sectioning ability.Unfortunately,common two-photon luminescence is in visible band with an extremely high exciation power density,which limits its application.Here,we synthesized NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs with strong twophoton NIR emission and a low excitation power density.Furthermore,NaYF_(4):Yb/Tm@NaYF_(4)@SiO_(2)@OTMS@F127 NPs with high chemical stability were obtained by a modified multilayer coating method which was applied to upconversion NPs for thefirst time.In addition,it is shown that the as-prepared hydrophillic upconversion NPs have great biocompatibility and kept stable for 6 hours during in vivo whole-body imaging.The vessels with two-photon luminescence were clear even under an excitation power density as low as 25mW/cm^(2).Vivid visualizations of capillaries and vessels in a mouse brain were also obtained with low background and high contrast.Because of cheaper instruments and safer power density,the NIR two-photon luminescence of NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs could promote wider application of two-photon technology.The modified multilayer coating method could be widely used for upconversion NPs to increase the stable time of the in vivo circulation.Our work possesses a great potential for deep imaging and imaging-guided treatment in the future.展开更多
Low excitation voltage for an electromagnetic acoustic transducer(EMAT)is necessary for the petrochemical equipment and facilities inspection,which work at high-temperatures,to avoid potential explosion.However,low ex...Low excitation voltage for an electromagnetic acoustic transducer(EMAT)is necessary for the petrochemical equipment and facilities inspection,which work at high-temperatures,to avoid potential explosion.However,low excitation voltage causes low signal-to-noise ratio(SNR)signals that are difficult to extract features,especially in a high-temperature environment,which causes high noise.In this study,a denoising method called the variational wavelet ensemble empirical(VWEE)method was proposed by combining the advantages of the variational modal decomposition(VMD),wavelet threshold(WT)denoising,and ensemble empirical mode decomposition(EEMD)methods.To validate the VWEE method,EMAT signals obtained in the temperature range of 25 to 700°C were analyzed.The results show that,compared with VMD,WT and empirical mode decomposition denoising methods,the SNR of proposed method is improved more than two times.The VWEE method dramatically improved the SNR of a high-temperature EMAT signal and enhanced the accuracy of defect echos extraction.展开更多
Specific heat is a powerful tool to investigate the physical properties of condensed materials.Superconducting state is achieved through the condensation of paired electrons,namely,the Cooper pairs.The condensed Coope...Specific heat is a powerful tool to investigate the physical properties of condensed materials.Superconducting state is achieved through the condensation of paired electrons,namely,the Cooper pairs.The condensed Cooper pairs have lower entropy compared with that of electrons in normal metal,thus specific heat is very useful in detecting the low lying quasiparticle excitations of the superconducting condensate and the pairing symmetry of the superconducting gap.In this brief overview,we will give an introduction to the specific heat investigation of the physical properties of superconductors.We show the data obtained in cuprate and iron based superconductors to reveal the pairing symmetry of the order parameter.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 51277165the Natural Science Foundation of Zhejiang Province under Grant No LY15F10001
文摘This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is vMidated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM.
基金This work is partially supported by National Key Research and Development Program of China(Grant No.2018YFC1407503)the Fundamental Research Funds for the Central Universities(2018FZA5001)The National Natural Science Foundation of China(Grant No.11621101).
文摘Two-photon luminescence with near-infrared(NIR)excitation of upconversion nanoparticles(NPs)is of great importance in biological imaging due to deep penetration in high-scattering tissues,low auto-luminescence and good sectioning ability.Unfortunately,common two-photon luminescence is in visible band with an extremely high exciation power density,which limits its application.Here,we synthesized NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs with strong twophoton NIR emission and a low excitation power density.Furthermore,NaYF_(4):Yb/Tm@NaYF_(4)@SiO_(2)@OTMS@F127 NPs with high chemical stability were obtained by a modified multilayer coating method which was applied to upconversion NPs for thefirst time.In addition,it is shown that the as-prepared hydrophillic upconversion NPs have great biocompatibility and kept stable for 6 hours during in vivo whole-body imaging.The vessels with two-photon luminescence were clear even under an excitation power density as low as 25mW/cm^(2).Vivid visualizations of capillaries and vessels in a mouse brain were also obtained with low background and high contrast.Because of cheaper instruments and safer power density,the NIR two-photon luminescence of NaYF_(4):Yb/Tm@NaYF_(4)upconversion NPs could promote wider application of two-photon technology.The modified multilayer coating method could be widely used for upconversion NPs to increase the stable time of the in vivo circulation.Our work possesses a great potential for deep imaging and imaging-guided treatment in the future.
基金National Natural Science Foundation of China(Grant No.62071433)Shanxi Province Graduate Student Innovation Project(Grant No.2021Y583).
文摘Low excitation voltage for an electromagnetic acoustic transducer(EMAT)is necessary for the petrochemical equipment and facilities inspection,which work at high-temperatures,to avoid potential explosion.However,low excitation voltage causes low signal-to-noise ratio(SNR)signals that are difficult to extract features,especially in a high-temperature environment,which causes high noise.In this study,a denoising method called the variational wavelet ensemble empirical(VWEE)method was proposed by combining the advantages of the variational modal decomposition(VMD),wavelet threshold(WT)denoising,and ensemble empirical mode decomposition(EEMD)methods.To validate the VWEE method,EMAT signals obtained in the temperature range of 25 to 700°C were analyzed.The results show that,compared with VMD,WT and empirical mode decomposition denoising methods,the SNR of proposed method is improved more than two times.The VWEE method dramatically improved the SNR of a high-temperature EMAT signal and enhanced the accuracy of defect echos extraction.
文摘Specific heat is a powerful tool to investigate the physical properties of condensed materials.Superconducting state is achieved through the condensation of paired electrons,namely,the Cooper pairs.The condensed Cooper pairs have lower entropy compared with that of electrons in normal metal,thus specific heat is very useful in detecting the low lying quasiparticle excitations of the superconducting condensate and the pairing symmetry of the superconducting gap.In this brief overview,we will give an introduction to the specific heat investigation of the physical properties of superconductors.We show the data obtained in cuprate and iron based superconductors to reveal the pairing symmetry of the order parameter.