The energy relationships among all the elements, by which the magnetostrictive transducers are manufactured, in Finite Element Method (FEM) are analyzed, then the expres- sions of FEM dynamics equations and performanc...The energy relationships among all the elements, by which the magnetostrictive transducers are manufactured, in Finite Element Method (FEM) are analyzed, then the expres- sions of FEM dynamics equations and performances formulas for magnetostrictive transducers are derived. The vibrating modes of the class VII transducer and its shell vibration are calcu- lated theoretically and the results point out that there is a breathing mode and if the transducer works at this mode, the transducer will vibrate with a greater volume speed and source level.展开更多
Vibrating modes of the manufactured flextensional transducer and its shell are experimentally investigated. The result are consistent with the theoretical calculations. The acoustical performances for the transducer a...Vibrating modes of the manufactured flextensional transducer and its shell are experimentally investigated. The result are consistent with the theoretical calculations. The acoustical performances for the transducer are measured: resonance frequency is 1.16 kHz in the underwater, bandwidth is 680 Hz, mechanical quality factor is 1.71, transmitting current response is 186.1 dB, electromechanical efficiency is 13.1%.展开更多
基金the Scientific Fund of Shaanxi Province and the Youth Scientific Fund ofShaanxi Normal University
文摘The energy relationships among all the elements, by which the magnetostrictive transducers are manufactured, in Finite Element Method (FEM) are analyzed, then the expres- sions of FEM dynamics equations and performances formulas for magnetostrictive transducers are derived. The vibrating modes of the class VII transducer and its shell vibration are calcu- lated theoretically and the results point out that there is a breathing mode and if the transducer works at this mode, the transducer will vibrate with a greater volume speed and source level.
基金the Scientific fund of Shaanxi Province and the Youth Scientific fund of Shaanxi Normal University.
文摘Vibrating modes of the manufactured flextensional transducer and its shell are experimentally investigated. The result are consistent with the theoretical calculations. The acoustical performances for the transducer are measured: resonance frequency is 1.16 kHz in the underwater, bandwidth is 680 Hz, mechanical quality factor is 1.71, transmitting current response is 186.1 dB, electromechanical efficiency is 13.1%.