The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the mean...The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the means by which they are damaged and characters of the wear surface were analyzed. The results show that high resistance to impact fracture and high abrasiveness can be achieved after appropriate heat treatment at residual rolling temperature. This kind of heat treatment technology has several advantages under low impact and hard abrasive. These results are very useful for determining the optimized heat treatment technology at residual rolling temperatures.展开更多
The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent duc...The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.展开更多
This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin(AP), poly acr...This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin(AP), poly acrylic acid(PAA), and a graft copolymer(AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction(XRD) and electron probe microanalysis(EPMA) techniques.展开更多
Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of ...Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.展开更多
The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the ...The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.展开更多
The characteristic of groundwater belongs to low iron but high manganese in Shenyang Hunnan New Developed Area.The first stage engineering of The WTP of Shenyang Hunnan industry Area were designed according the techno...The characteristic of groundwater belongs to low iron but high manganese in Shenyang Hunnan New Developed Area.The first stage engineering of The WTP of Shenyang Hunnan industry Area were designed according the technology of aerated-contact oxidation,and the water quality couldn’t reach to the standard after the WTP putted into production,1996.展开更多
The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal ...The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.展开更多
The effect of rare earth elements on dynamics of thermal fatigue crack′s propagation in low alloy white cast iron was studied. The results show that the generation and growth of the thermal fatigue crack can be restr...The effect of rare earth elements on dynamics of thermal fatigue crack′s propagation in low alloy white cast iron was studied. The results show that the generation and growth of the thermal fatigue crack can be restrained and the activation energy for the crack′s propagation can be increased by adding a certain amount of RE, and especially, the restraint for the thermal fatigue crack′s propagation is more evident under the combined action of RE and heat treatment at high working temperatures, which can be attributed to the segregation of RE to interfaces, the participation of granular carbides and the change of eutectic carbide morphology.展开更多
The Influence of RE on wear resistance of wear resistant cast iron containing low alloy was studied by means of slide wear and impact wear test. Moreover, its microstructure and characteristics of wearing surface was ...The Influence of RE on wear resistance of wear resistant cast iron containing low alloy was studied by means of slide wear and impact wear test. Moreover, its microstructure and characteristics of wearing surface was analyzed. The experimental results show that RE can improve the wear resistance of wear resistant cast iron containing low alloy, especially for impact wear resistance. The optimum wear resistance of wear resistant cast iron containing low alloy modified by RE of 0.046% can be obtained by normalization at 950 ℃ for 3 h. Moreover, the coordinated effect of rare earths and heat treatment was also revealed in this paper.展开更多
Burnt lime and serpentine were incorporated into the sinter mix to improve high iron and low silica sinte-ring. Optimization of how to use burnt lime including dosage of burnt lime, moisture of sinter mix, hydrating a...Burnt lime and serpentine were incorporated into the sinter mix to improve high iron and low silica sinte-ring. Optimization of how to use burnt lime including dosage of burnt lime, moisture of sinter mix, hydrating andgranulation time was performed. Evaluations of sinter characteristics including sinter mineralogy, reducibility, lowtemperature reduction degradation, softening and melting down properties were carried out. Compared with the re-sults of traditional process in base case, the tumbling index (TI) is increased by 1.53%-2.33% through proportio-ning high ratio of burnt lime or adding serpentine in the sinter mix. It is shown that effective granulation, better per-meability and improved high temperature reactivity in the sinter bed are achieved, resulting in an increase in 3.13 %- 5.10% calcium ferrite occurring in acicular and columnar shape and decrease in glass phase, and with the reduc-ibility index(RI) being increased by 1.65%- 3.25%.展开更多
The formation and growth of thermal fatigue crack and the function of RE and heat treatment in wear resistance of cast iron containing low alloy were investigated,and it was analyzed in view of the activation energy f...The formation and growth of thermal fatigue crack and the function of RE and heat treatment in wear resistance of cast iron containing low alloy were investigated,and it was analyzed in view of the activation energy for the crack′s propagation. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides,and the cracks are grown by themselves spreading and joining each other. RE can improve the eutectic carbide′s morphology,inhibit the generation and propagation of thermal fatigue cracks,therefore,promote the activation energy for the crack′s propagation,and especially,which is more noticeable in case of the RE modification in combination with heat treatment.展开更多
The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic e...The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experimental results show that heating temperature has great effect on impact toughness (α_k), bending fatigue (σ_(bb)) and relative toughness (σ_(bb)×f), but little effect on hardness (HRC). When the specimen was held at 960 ℃ for 3 h, it has better comprehensive mechanical properties, and the reason and regularity of the change for mechanical properties of the cast iron were reviewed.展开更多
The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of pro...The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed.展开更多
As nickel is mainly used to produce stainless steel, the demand for nickel is increasing. With the steady decline of nickel sulfide ore reserves, laterite will become the main source of nickel. In regards to China' s...As nickel is mainly used to produce stainless steel, the demand for nickel is increasing. With the steady decline of nickel sulfide ore reserves, laterite will become the main source of nickel. In regards to China' s current blast furnace method of producing pig low Ni iron with laterite, this study analyzed the technical characteristics and relevant problems of this process based on the discussion on the characteristics of laterite. The study aims to provide a reference for the better use of laterite in China.展开更多
Grey cast iron’s welding itself is a complex proble m.So proper welding materials must be selected,complex welding techniques such as preheating before weldingslow cooling after welding etc,should be taken. However t...Grey cast iron’s welding itself is a complex proble m.So proper welding materials must be selected,complex welding techniques such as preheating before weldingslow cooling after welding etc,should be taken. However the carbon component in low-carbon steel is comparatively low,the carbo n of welded joint will diffuse to the low-carbon steel when it is welded with gr ey cast iron,which will cause the component of carbon greatly increased at the low-carbon steel side in HAZ,high carbon martensite and cracks will occur.If p reheating before weldingslow cooling after welding and other welding procedure are taken,the grey cast iron side can probably be qualified.But the carbon wi ll diffuse to HAZ of the low-carbon steel side more easily.Therefore after stud ying the weldabilities of grey cast iron and low-carbon steel,the author develo ped a new type of cast iron electrode considering the demands of factories’prac tices,and the welding technology test of grey cast iron and low-carbon steel ar e carried out. In this paper,a new type of grey cast iron electrode is developed based on the practices in factories,its ingredients and properties are introduced.The w elding tests of grey cast iron and low-carbon steel are practiced.The joint str ucture of the dissimilar metal and the appearance of weld are observed.The hard ness distribution of the welded joint is tested.The results show that the elect rode can meet the welding requirements of the grey cast iron and low-carbon stee l.There are no cracksgas pores and other defects of metallurgy in welded join t,the appearance of welded joint are good.展开更多
Both the production process and the chemical composition of Sx were studied, and the serialization of low carbon ductile iron was also discussed. It was indicated that Sx modifier was sensitive to the carbon equivalen...Both the production process and the chemical composition of Sx were studied, and the serialization of low carbon ductile iron was also discussed. It was indicated that Sx modifier was sensitive to the carbon equivalent (CE) of molten iron and to some alloying elements too. When the CE of molten iron and the contents of alloying elements were changed, the content of Sx must be revised with the change correspondingly. Low carbon ductile iron can be stably changed into the one that non-carbon acicular ferrite and retained austenite (about 25%-28%) by quasi-casting bainitic process of using Sx-2 modifier treated Si-Mn-Cr-Cu-alloyed low carbon molten iron. The austenitic low carbon as-cast ductile iron could be obtained by the Ni-Si-Cr 35 5 2 percent alloys molten iron with less than 2% carbon treated by type Sx-3 modifier. The high-toughness ferritic low carbon as-cast ductile iron which contained more than 85 % ferrite in matrix could be got after the molten iron treated by type Sx-4 modifier, and it’s elongation was more than 10 %.展开更多
In this study, in order to investigate the influence of Cr element on the impact fracture process of ductile Ni-resistant alloyed iron at low temperature, different contents of Cr element were added to ductile Ni-resi...In this study, in order to investigate the influence of Cr element on the impact fracture process of ductile Ni-resistant alloyed iron at low temperature, different contents of Cr element were added to ductile Ni-resistant(DNR) austenitic alloyed iron. The experimental results show that Cr addition can increase the hardness of the DNR alloyed iron, but it has an destructive effect on low-temperature impact properties. Through the analysis of the dynamic load and absorbed energy of samples with different Cr contents in the impact fracture process, and the comparison of the impact fracture process at room and low temperatures, it reveals that Cr addition into the DNR alloyed iron can facilitate the formation of the carbide mixture in Mn23C6 and Cr23C6 with homogeneous and discontinuous distribution. Meanwhile, Cr addition also can improve the the maximum dynamic load and crack initiation energy at low temperature, but has no obvious effect on the yield behavior of the DNR alloyed iron in the impact fracture process. Compared with the impact crack propagation process at room temperature, the metastable propagation energy at low temperature declines significantly with an increase in Cr content. This is because the micro-cracks that caused by the carbides weaken the matrix, resulting in the decline of impact crack propagation resistance. The fracture analysis results also show that the impact fracture mechanism gradually transforms from ductile to brittle with an increase in Cr content at low temperature. It explains that too much Cr addition can lead to brittle fracture even though the austenitic matrix has a good toughness at low temperature.展开更多
Corrosion behaviour of cast iron and low alloy steel in cocoa liquor and well water was investigated. The average weight losses of the specimens were measured using digital weighing balance. The results showed that th...Corrosion behaviour of cast iron and low alloy steel in cocoa liquor and well water was investigated. The average weight losses of the specimens were measured using digital weighing balance. The results showed that the weight losses of both cast iron and low alloy steel in both media increases with time. Corrosion rate of cast iron in cocoa liquor increases rapidly with time for up to 336 hours (1000 μm/yr), but in well water the rapid rate of corrosion only lasted up to 187 hours (1160 μm/yr) thereafter it continuously dropping until 264 hours (667 μm/yr) after which it remains constant. Low alloy steel corroded faster in cocoa liquor up to 264 hours (200 μm/yr), whereas the initial rapid corrosion rate only lasted up to 168 hours (180 μm/yr) in well water environment. The results revealed that low alloy steel exhibited better corrosion resistance in both media, with cocoa liquor been more aggressive. Thus, low alloy steel will be a better material for piping and pumping system in cocoa processing industries.展开更多
Silicate perovskites((Mg, Fe)SiO 3 and CaS iO 3) are believed to be the major constituent minerals in the lower mantle. The phase relation, solid solution, spin state of iron and water solubility related to the lo...Silicate perovskites((Mg, Fe)SiO 3 and CaS iO 3) are believed to be the major constituent minerals in the lower mantle. The phase relation, solid solution, spin state of iron and water solubility related to the lower mantle perovskite are of great effect on the geodynamics of the Earth's interior and on ore mineralization. Previous studies indicate that a large amount of iron coupled with aluminum can incorporate into magnesium perovskite, but this is discordant with the disproportionation of(Mg,Fe)SiO 3 perovskite into iron-free MgS i O3 perovskite and hexagonal phase(Mg0.6Fe0.4)SiO 3 in the Earth's lower mantle. MnS iO 3 is the first chemical component confirmed to form wide range solid solution with Ca SiO 3 perovskite and complete solid solution with MgS i O3 perovskite at the P-T conditions in the lower mantle, and addition of Mn Si O3 will strongly affects the mutual solubility between Mg Si O3 and CaS iO 3. The spin state of iron is deeply depends on the site occupation of the Fe3+or Fe2+, the synthesis and the annealing conditions of the sample. It seems that the spin state of Fe2+ in the lower mantle perovskite can be settled as high spin, however, the existence of intermediate spin or low spin state of Fe2+ in perovskite has not been clarified. Moreover, different results have also been reported for the spin state of Fe3+ in perovskite. The water solubility of the lower mantle perovskite is related with its composition. In pure Mg SiO 3 perovskite, only less than 500 ppm water was reported. Al–Mg Si O3 perovskite or Al–Fe–MgS iO 3 perovskite in the lower mantle accommodates water of 1100 to 1800 ppm. Further experiments are necessary to clarify the detailed conditions for perovskite solid solution, to reliably analyze the valence and spin states of iron in the coexisting iron-bearing phases, and to compare the water solubility of different phases at different layers for deeply understanding the geodynamics of the Earth's interior and ore mineralization.展开更多
基金Item Sponsored by Guiding Program of Science and Technology Research of Jilin Province of China (20000513)
文摘The low-energy, multi-impact fracture resistance and the abrasiveness of the cross-rolled low alloy white cast iron grinding balls were studied after heat treatments at residual rolling temperature. Moreover, the means by which they are damaged and characters of the wear surface were analyzed. The results show that high resistance to impact fracture and high abrasiveness can be achieved after appropriate heat treatment at residual rolling temperature. This kind of heat treatment technology has several advantages under low impact and hard abrasive. These results are very useful for determining the optimized heat treatment technology at residual rolling temperatures.
文摘The wear resistances of austempered ductile iron (ADI) were improved through intxoduction of a new phase (carbide) into the ma- txix by addition of chromium. In the present investigation, low-caxbon-equivalent ductile iron (LCEDI) (CE = 3.06%, and CE represents cax- bon-equivalent) with 2.42% chromium was selected. LCEDI was austeintized at two difl'erent temperatures (900 and 975~C) a^ld soaked for 1 h and then quenched in a salt bath at 325~C for 0 to 10 h. Samples were analyzed using optical microscopy and X-ray diffraction. Wear tests were carded out on a pin-on-disk-type machine. The efl'ect of austenization temperature on the wear resistance, impact strength, and the mi- crostructure was evaluated. A stxucture-property correlation based on the observations is established.
基金the National Metallurgical Laboratory,Jamshedpur for their kind support
文摘This study aims to beneficiate low grade goethitic iron ore fines using a selective flocculation process. Selective flocculation studies were conducted using different polymers such as starch amylopectin(AP), poly acrylic acid(PAA), and a graft copolymer(AP-g-PAA). The obtained results were analyzed; they indicate the enhancement of the iron ore grade from 58.49% to 67.52% using AP-g-PAA with a recovery of 95.08%. In addition, 64.45% Fe with a recovery of 88.79% was obtained using AP. Similarly, using PAA, the grade increased to 63.46% Fe with a recovery of 82.10%. The findings are also supported by characterizing concentrates using X-ray diffraction(XRD) and electron probe microanalysis(EPMA) techniques.
基金financially supported by the National Natural Science Foundation of China(No.51274142)the Science&Technology Project of Liaoning Province(No.2009221005)the Science&Technology Project of Shenyang City(Nos.F10-035-2-00 and F11-069-2-00)
文摘Different contents of Ni(0.3wt.%to 1.2wt.%)were added to the QT400-18L ductile iron to investigate the effect of Ni addition on the impact toughness of cast ductile irons at low temperatures.The impact toughnesses of the samples at room and low temperatures were tested.The microstructures and fractographs were observed.Results show that with the increase of Ni addition there is a general trend of refinement of the ferrite matrix while the nodule density shows no obvious change.When the Ni content is 0.7wt.%,the matrix structure is the refined ferrite with a very small fraction(about 2%)of pearlite near the eutectic cell boundaries.When the Ni content is further increased,the fraction of pearlite increases significantly and reaches more than 5%when 1.2wt.%Ni is added.The impact toughness at room temperature increases as the content of Ni increases from 0.3 wt.%to 0.7 wt.%,but decreases as the Ni content further increases to 1.2wt.%due to the increase of pearlite fraction.The maximum value of the impact work is 18.5 J at room temperature with 0.7wt.%Ni addition.The average value of the impact work is still more than 13 J even at-30℃.In addition,the fracture mechanism changes from ductile manner to brittleness as the testing temperature decreases from 20℃to-60℃.
文摘The effect of cooling rate on structure and properties of wear-resistant low chromium cast iron after 40% hot deformation was investigated by metallographic and scanning electron microscope. The results show that the cooling rate is closely related to the structure and properties, and for the cast iron, the best comprehensive mechanical properties were obtained by forced air cooling with a cooling rate as about 7 ℃/s. The reason and regularity for the change of mechanical properties were analyzed.
文摘The characteristic of groundwater belongs to low iron but high manganese in Shenyang Hunnan New Developed Area.The first stage engineering of The WTP of Shenyang Hunnan industry Area were designed according the technology of aerated-contact oxidation,and the water quality couldn’t reach to the standard after the WTP putted into production,1996.
基金financially supported by the Hebei Province Science and Technology Support Program(No.14211007D)
文摘The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.
文摘The effect of rare earth elements on dynamics of thermal fatigue crack′s propagation in low alloy white cast iron was studied. The results show that the generation and growth of the thermal fatigue crack can be restrained and the activation energy for the crack′s propagation can be increased by adding a certain amount of RE, and especially, the restraint for the thermal fatigue crack′s propagation is more evident under the combined action of RE and heat treatment at high working temperatures, which can be attributed to the segregation of RE to interfaces, the participation of granular carbides and the change of eutectic carbide morphology.
文摘The Influence of RE on wear resistance of wear resistant cast iron containing low alloy was studied by means of slide wear and impact wear test. Moreover, its microstructure and characteristics of wearing surface was analyzed. The experimental results show that RE can improve the wear resistance of wear resistant cast iron containing low alloy, especially for impact wear resistance. The optimum wear resistance of wear resistant cast iron containing low alloy modified by RE of 0.046% can be obtained by normalization at 950 ℃ for 3 h. Moreover, the coordinated effect of rare earths and heat treatment was also revealed in this paper.
基金Project(2000-26) supported by the Foundation for the Teaching and Research Program for Outstanding Young Teachers in Higher Education Institutions of Education Ministry, China
文摘Burnt lime and serpentine were incorporated into the sinter mix to improve high iron and low silica sinte-ring. Optimization of how to use burnt lime including dosage of burnt lime, moisture of sinter mix, hydrating andgranulation time was performed. Evaluations of sinter characteristics including sinter mineralogy, reducibility, lowtemperature reduction degradation, softening and melting down properties were carried out. Compared with the re-sults of traditional process in base case, the tumbling index (TI) is increased by 1.53%-2.33% through proportio-ning high ratio of burnt lime or adding serpentine in the sinter mix. It is shown that effective granulation, better per-meability and improved high temperature reactivity in the sinter bed are achieved, resulting in an increase in 3.13 %- 5.10% calcium ferrite occurring in acicular and columnar shape and decrease in glass phase, and with the reduc-ibility index(RI) being increased by 1.65%- 3.25%.
文摘The formation and growth of thermal fatigue crack and the function of RE and heat treatment in wear resistance of cast iron containing low alloy were investigated,and it was analyzed in view of the activation energy for the crack′s propagation. The results show that the thermal fatigue cracks are mainly generated at eutectic carbides,and the cracks are grown by themselves spreading and joining each other. RE can improve the eutectic carbide′s morphology,inhibit the generation and propagation of thermal fatigue cracks,therefore,promote the activation energy for the crack′s propagation,and especially,which is more noticeable in case of the RE modification in combination with heat treatment.
文摘The influence of heating temperature on mechanical properties of low chromium wear resistant cast iron containing rare earth elements was studied by means of metallographic examination, scanning electron microscopic examination and mechanical property test. The experimental results show that heating temperature has great effect on impact toughness (α_k), bending fatigue (σ_(bb)) and relative toughness (σ_(bb)×f), but little effect on hardness (HRC). When the specimen was held at 960 ℃ for 3 h, it has better comprehensive mechanical properties, and the reason and regularity of the change for mechanical properties of the cast iron were reviewed.
文摘The effect of cooling rate after 40% hot deformation on structure and mechanical properties of low alloy wear resistance cast iron was investigated by metallographic, scanning electron microscopes and detection of properties. The results show that for the cast steel after deformed, the amount of granular carbides of precipitation during the cooling decreased with the increase of the cooling rate, but the hardness was obviously enhanced, as a result, better mechanical properties will be obtained by force air cooling(cooling rate is about 7 ℃·s-1). And the reason of the change for structure and mechanical properties of the cast steel were analyzed.
文摘As nickel is mainly used to produce stainless steel, the demand for nickel is increasing. With the steady decline of nickel sulfide ore reserves, laterite will become the main source of nickel. In regards to China' s current blast furnace method of producing pig low Ni iron with laterite, this study analyzed the technical characteristics and relevant problems of this process based on the discussion on the characteristics of laterite. The study aims to provide a reference for the better use of laterite in China.
文摘Grey cast iron’s welding itself is a complex proble m.So proper welding materials must be selected,complex welding techniques such as preheating before weldingslow cooling after welding etc,should be taken. However the carbon component in low-carbon steel is comparatively low,the carbo n of welded joint will diffuse to the low-carbon steel when it is welded with gr ey cast iron,which will cause the component of carbon greatly increased at the low-carbon steel side in HAZ,high carbon martensite and cracks will occur.If p reheating before weldingslow cooling after welding and other welding procedure are taken,the grey cast iron side can probably be qualified.But the carbon wi ll diffuse to HAZ of the low-carbon steel side more easily.Therefore after stud ying the weldabilities of grey cast iron and low-carbon steel,the author develo ped a new type of cast iron electrode considering the demands of factories’prac tices,and the welding technology test of grey cast iron and low-carbon steel ar e carried out. In this paper,a new type of grey cast iron electrode is developed based on the practices in factories,its ingredients and properties are introduced.The w elding tests of grey cast iron and low-carbon steel are practiced.The joint str ucture of the dissimilar metal and the appearance of weld are observed.The hard ness distribution of the welded joint is tested.The results show that the elect rode can meet the welding requirements of the grey cast iron and low-carbon stee l.There are no cracksgas pores and other defects of metallurgy in welded join t,the appearance of welded joint are good.
基金The paper is support by Foundation Key Project of Yunnan:Study on inoculated theory and reliability of low carbon ductileiron, NO. 1999E0004Z
文摘Both the production process and the chemical composition of Sx were studied, and the serialization of low carbon ductile iron was also discussed. It was indicated that Sx modifier was sensitive to the carbon equivalent (CE) of molten iron and to some alloying elements too. When the CE of molten iron and the contents of alloying elements were changed, the content of Sx must be revised with the change correspondingly. Low carbon ductile iron can be stably changed into the one that non-carbon acicular ferrite and retained austenite (about 25%-28%) by quasi-casting bainitic process of using Sx-2 modifier treated Si-Mn-Cr-Cu-alloyed low carbon molten iron. The austenitic low carbon as-cast ductile iron could be obtained by the Ni-Si-Cr 35 5 2 percent alloys molten iron with less than 2% carbon treated by type Sx-3 modifier. The high-toughness ferritic low carbon as-cast ductile iron which contained more than 85 % ferrite in matrix could be got after the molten iron treated by type Sx-4 modifier, and it’s elongation was more than 10 %.
基金supported by the National Natural Science Foundation of China(No.51274142)the Natural Science Foundation of Liaoning Province(No.2014028015)the Science&Technology Project of Shenyang City(No.F15-199-1-15)
文摘In this study, in order to investigate the influence of Cr element on the impact fracture process of ductile Ni-resistant alloyed iron at low temperature, different contents of Cr element were added to ductile Ni-resistant(DNR) austenitic alloyed iron. The experimental results show that Cr addition can increase the hardness of the DNR alloyed iron, but it has an destructive effect on low-temperature impact properties. Through the analysis of the dynamic load and absorbed energy of samples with different Cr contents in the impact fracture process, and the comparison of the impact fracture process at room and low temperatures, it reveals that Cr addition into the DNR alloyed iron can facilitate the formation of the carbide mixture in Mn23C6 and Cr23C6 with homogeneous and discontinuous distribution. Meanwhile, Cr addition also can improve the the maximum dynamic load and crack initiation energy at low temperature, but has no obvious effect on the yield behavior of the DNR alloyed iron in the impact fracture process. Compared with the impact crack propagation process at room temperature, the metastable propagation energy at low temperature declines significantly with an increase in Cr content. This is because the micro-cracks that caused by the carbides weaken the matrix, resulting in the decline of impact crack propagation resistance. The fracture analysis results also show that the impact fracture mechanism gradually transforms from ductile to brittle with an increase in Cr content at low temperature. It explains that too much Cr addition can lead to brittle fracture even though the austenitic matrix has a good toughness at low temperature.
文摘Corrosion behaviour of cast iron and low alloy steel in cocoa liquor and well water was investigated. The average weight losses of the specimens were measured using digital weighing balance. The results showed that the weight losses of both cast iron and low alloy steel in both media increases with time. Corrosion rate of cast iron in cocoa liquor increases rapidly with time for up to 336 hours (1000 μm/yr), but in well water the rapid rate of corrosion only lasted up to 187 hours (1160 μm/yr) thereafter it continuously dropping until 264 hours (667 μm/yr) after which it remains constant. Low alloy steel corroded faster in cocoa liquor up to 264 hours (200 μm/yr), whereas the initial rapid corrosion rate only lasted up to 168 hours (180 μm/yr) in well water environment. The results revealed that low alloy steel exhibited better corrosion resistance in both media, with cocoa liquor been more aggressive. Thus, low alloy steel will be a better material for piping and pumping system in cocoa processing industries.
基金partly supported by projects from JSPS KAKENHI (Grant No. 18340167)MEXT KAKENHI (Grant No. 20103002)+2 种基金NSFC (Grand No.90914002)China Geological Survey (Grant No. 1212011220926)the Ministry of Education of China (Grant No. 20130022110003)
文摘Silicate perovskites((Mg, Fe)SiO 3 and CaS iO 3) are believed to be the major constituent minerals in the lower mantle. The phase relation, solid solution, spin state of iron and water solubility related to the lower mantle perovskite are of great effect on the geodynamics of the Earth's interior and on ore mineralization. Previous studies indicate that a large amount of iron coupled with aluminum can incorporate into magnesium perovskite, but this is discordant with the disproportionation of(Mg,Fe)SiO 3 perovskite into iron-free MgS i O3 perovskite and hexagonal phase(Mg0.6Fe0.4)SiO 3 in the Earth's lower mantle. MnS iO 3 is the first chemical component confirmed to form wide range solid solution with Ca SiO 3 perovskite and complete solid solution with MgS i O3 perovskite at the P-T conditions in the lower mantle, and addition of Mn Si O3 will strongly affects the mutual solubility between Mg Si O3 and CaS iO 3. The spin state of iron is deeply depends on the site occupation of the Fe3+or Fe2+, the synthesis and the annealing conditions of the sample. It seems that the spin state of Fe2+ in the lower mantle perovskite can be settled as high spin, however, the existence of intermediate spin or low spin state of Fe2+ in perovskite has not been clarified. Moreover, different results have also been reported for the spin state of Fe3+ in perovskite. The water solubility of the lower mantle perovskite is related with its composition. In pure Mg SiO 3 perovskite, only less than 500 ppm water was reported. Al–Mg Si O3 perovskite or Al–Fe–MgS iO 3 perovskite in the lower mantle accommodates water of 1100 to 1800 ppm. Further experiments are necessary to clarify the detailed conditions for perovskite solid solution, to reliably analyze the valence and spin states of iron in the coexisting iron-bearing phases, and to compare the water solubility of different phases at different layers for deeply understanding the geodynamics of the Earth's interior and ore mineralization.