Accurate prediction of the aerodynamic response of a compressor under inlet distortion is crucial for next-generation civil aircraft,such as Boundary Layer Ingestion(BLI)silent aircraft.Therefore,research on the Body ...Accurate prediction of the aerodynamic response of a compressor under inlet distortion is crucial for next-generation civil aircraft,such as Boundary Layer Ingestion(BLI)silent aircraft.Therefore,research on the Body Force(BF)model plays a significant role in achieving this objective.However,distorted inlet airflow can lead to varying operating conditions across different spatial locations of the compressor,which may cause some regions to operate outside the stability boundary.Consequently,the accuracy of BF model simulations might be compromised.To address this issue,this paper proposes a numerical simulation strategy for acquiring the steady axisymmetric three-dimensional flow field of a compressor operating at low mass flow rates,which is known as the Underlying Axisymmetric Pressure Rise Characteristic(UAPRC).The proposed simulation accounts for two different rotor speeds of a transonic compressor and identifies initial positions in the flow field where deterioration occurs based on prior experimental investigations.Moreover,simulation results are incorporated into the BF model to replicate hub instability observed in experiments.Obtained results demonstrate that this strategy provides valid predictions of the UAPRC of the compressor,thereby addressing the limitations associated with the BF model.展开更多
基金National Natural Science Foundation of the People’s Republic of China“The thermal evolution and X-ray bursts in accreting strange stars”(12263006)“A combining study of the theoretical simulations and observations about the structure and evolution of magnetic massive stars and related objects”(U2031204)Natural Science Foundation of Xinjiang“The study of crust cooling of soft X-ray transients”(2020D01C063).
基金the National Natural Science Foundation of China(Nos.52322603 and 51976005)the Science Center for Gas Turbine Project,China(Nos.P2022-B-II-004-001 and P2023-B-II-001-001)the Fundamental Research Funds for the Central Universities,and Beijing Nova Program,China(Nos.20220484074 and 20230484479).
文摘Accurate prediction of the aerodynamic response of a compressor under inlet distortion is crucial for next-generation civil aircraft,such as Boundary Layer Ingestion(BLI)silent aircraft.Therefore,research on the Body Force(BF)model plays a significant role in achieving this objective.However,distorted inlet airflow can lead to varying operating conditions across different spatial locations of the compressor,which may cause some regions to operate outside the stability boundary.Consequently,the accuracy of BF model simulations might be compromised.To address this issue,this paper proposes a numerical simulation strategy for acquiring the steady axisymmetric three-dimensional flow field of a compressor operating at low mass flow rates,which is known as the Underlying Axisymmetric Pressure Rise Characteristic(UAPRC).The proposed simulation accounts for two different rotor speeds of a transonic compressor and identifies initial positions in the flow field where deterioration occurs based on prior experimental investigations.Moreover,simulation results are incorporated into the BF model to replicate hub instability observed in experiments.Obtained results demonstrate that this strategy provides valid predictions of the UAPRC of the compressor,thereby addressing the limitations associated with the BF model.