期刊文献+
共找到7,569篇文章
< 1 2 250 >
每页显示 20 50 100
Synergistic anionic/zwitterionic mixed surfactant system with high emulsification efficiency for enhanced oil recovery in low permeability reservoirs 被引量:1
1
作者 Hai-Rong Wu Rong Tan +6 位作者 Shi-Ping Hong Qiong Zhou Bang-Yu Liu Jia-Wei Chang Tian-Fang Luan Ning Kang Ji-Rui Hou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期936-950,共15页
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant... Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs. 展开更多
关键词 Anionic/zwitterionic mixed surfactant system EMULSIFICATION Synergistic effect low permeability reservoir Enhanced oil recovery
下载PDF
A novel profile modification HPF-Co gel satisfied with fractured low permeability reservoirs in high temperature and high salinity
2
作者 Ya-Kai Li Ji-Rui Hou +6 位作者 Wei-Peng Wu Ming Qu Tuo Liang Wei-Xin Zhong Yu-Chen Wen Hai-Tong Sun Yi-Nuo Pan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期683-693,共11页
Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and hi... Conformance control and water plugging are a widely used EOR method in mature oilfields.However,majority of conformance control and water plugging agents are unavoidable dehydrated situation in high-temperature and high-salinity low permeability reservoirs.Consequently,a novel conformance control system HPF-Co gel,based on high-temperature stabilizer(CoCl_(2)·H_(2)O,CCH)is developed.The HPF-Co bulk gel has better performances with high temperature(120℃)and high salinity(1×10^(5)mg/L).According to Sydansk coding system,the gel strength of HPF-Co with CCH is increased to code G.The dehydration rate of HPF-Co gel is 32.0%after aging for 150 d at 120℃,showing excellent thermal stability.The rheological properties of HPF gel and HPF-Co gel are also studied.The results show that the storage modulus(G′)of HPF-Co gel is always greater than that of HPF gel.The effect of CCH on the microstructure of the gel is studied.The results show that the HPF-Co gel with CCH has a denser gel network,and the diameter of the three-dimensional network skeleton is 1.5-3.5μm.After 90 d of aging,HPF-Co gel still has a good three-dimensional structure.Infrared spectroscopy results show that CCH forms coordination bonds with N and O atoms in the gel amide group,which can suppress the vibration of cross-linked sites and improve the stability at high temperature.Fractured core plugging test determines the optimized polymer gel injection strategy and injection velocity with HPF-Co bulk gel system,plugging rate exceeding 98%.Moreover,the results of subsequent waterflooding recovery can be improved by 17%. 展开更多
关键词 low permeability reservoir High-temperature resistant gel Complexation reaction Polymer gel injection strategy Plugging rate Enhanced oil recovery
下载PDF
Development of Superhydrophobic Nano-SiO_(2)and Its Field Application in Low-permeability,High-temperature,and High-salinity Oil Reservoirs
3
作者 Qin Bing Gao Min +4 位作者 Lei Xue Zhao Lin Zhu Qizhi Meng Fanbin Jiang Jianlin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第3期1-14,共14页
In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,second... In this study,to meet the stringent requirements on the hydrophobicity of nano-SiO_(2)particles for use in depressurization and enhanced injection operations in high-temperature and high-salinity oil reservoirs,secondary chemical grafting modification of nano-SiO_(2)is performed using a silane coupling agent to prepare superhydrophobic nano-SiO_(2) particles.Using these superhydrophobic nano-SiO_(2)particles as the core agent,and liquid paraffin or diesel as the dispersion medium,a uniform dispersion of nano-SiO_(2)particles is achieved under high-speed stirring,and a chemically enhanced water injection system with colloidal stability that can be maintained for more than 60 d is successfully developed.Using this system,a field test of depressurization and enhanced injection is carried out on six wells in an oilfield,and the daily oil production level is increased by 11 t.The cumulative increased water injection is 58784 m^(3),the effective rate of the measures was 100%,and the average validity period is 661 d. 展开更多
关键词 nano-SiO_(2)particle hydrophobic modification enhanced injection operation low-grade reservoir low permeability oilfield
下载PDF
Numerical Simulation of Oil-Water Two-Phase Flow in Low Permeability Tight Reservoirs Based on Weighted Least Squares Meshless Method
4
作者 Xin Liu Kai Yan +3 位作者 Bo Fang Xiaoyu Sun Daqiang Feng Li Yin 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1539-1552,共14页
In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp... In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production. 展开更多
关键词 Weighted least squares method meshless method numerical simulation of low permeability tight reservoirs oil-water two-phase flow fracture half-length
下载PDF
The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs:a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie 被引量:10
5
作者 Tian Yang Ying-Chang Cao +4 位作者 Yan-Zhong Wang Henrik Friis Beyene Girma Haile Ke-Lai Xi Hui-Na Zhang 《Petroleum Science》 SCIE CAS CSCD 2016年第2期204-224,共21页
The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeabilit... The relationships between permeability and dynamics in hydrocarbon accumulation determine oil- bearing potential (the potential oil charge) of low perme- ability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member of the Shahejie Formation in the Dongying Sag has been investigated by detailed core descriptions, thin section analyses, fluid inclusion analyses, carbon and oxygen isotope analyses, mercury injection, porosity and permeability testing, and basin modeling. The cutoff values for the permeability of the reservoirs in the accumulation period were calculated after detailing the accumulation dynamics and reservoir pore structures, then the distribution pattern of the oil-bearing potential of reservoirs controlled by the matching relationship between dynamics and permeability during the accumulation period were summarized. On the basis of the observed diagenetic features and with regard to the paragenetic sequences, the reservoirs can be subdivided into four types of diagenetic facies. The reservoirs experienced two periods of hydro- carbon accumulation. In the early accumulation period, the reservoirs except for diagenetic facies A had middle to high permeability ranging from 10 × 10-3 gm2 to 4207 × 10-3 lain2. In the later accumulation period, the reservoirs except for diagenetic facies C had low permeability ranging from 0.015 × 10-3 gm2 to 62× 10-3 -3m2. In the early accumulation period, the fluid pressure increased by the hydrocarbon generation was 1.4-11.3 MPa with an average value of 5.1 MPa, and a surplus pressure of 1.8-12.6 MPa with an average value of 6.3 MPa. In the later accumulation period, the fluid pressure increased by the hydrocarbon generation process was 0.7-12.7 MPa with an average value of 5.36 MPa and a surplus pressure of 1.3-16.2 MPa with an average value of 6.5 MPa. Even though different types of reservoirs exist, all can form hydrocarbon accumulations in the early accumulation per- iod. Such types of reservoirs can form hydrocarbon accumulation with high accumulation dynamics; however, reservoirs with diagenetic facies A and diagenetic facies B do not develop accumulation conditions with low accumu- lation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock, Also at these depths, lenticular sand bodies can accumulate hydrocarbons. At shallower depths, only the reservoirs with oil-source fault development can accumulate hydrocarbons. For flat surfaces, hydrocarbons have always been accumulated in the reservoirs around the oil-source faults and areas near the center of subsags with high accumulation dynamics. 展开更多
关键词 reservoir porosity and permeabilityevolution Accumulation dynamics Cutoff-values ofpermeability in the accumulation period Oil-bearingpotential low permeability reservoir The third memberof the Shahejie Formation Dongying Sag
下载PDF
Advances in enhanced oil recovery technologies for low permeability reservoirs 被引量:11
6
作者 Wan-Li Kang Bo-Bo Zhou +1 位作者 Miras Issakhov Marabek Gabdullin 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1622-1640,共19页
Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploi... Low permeability oil and gas resources are rich and have great potential all over the world, which has gradually become the main goal of oil and gas development. However, after traditional primary and secondary exploitation, there is still a large amount of remaining oil that has not been recovered.Therefore, in recent years, enhanced oil recovery(EOR) technologies for low permeability reservoirs have been greatly developed to further improve crude oil production. This study presents a comprehensive review of EOR technologies in low permeability reservoirs with an emphasis on gas flooding, surfactant flooding, nanofluid flooding and imbibition EOR technologies. In addition, two kinds of gel systems are introduced for conformance control in low permeability reservoirs with channeling problems. Finally,the technical challenges, directions and outlooks of EOR in low permeability reservoirs are addressed. 展开更多
关键词 Enhanced oil recovery low permeability reservoir Gas flooding Surfactant flooding Nanofluid flooding IMBIBITION Conformance control
下载PDF
Identification of the Quaternary low gas-saturation reservoirs in the Sanhu area of the Qaidam Basin,China 被引量:2
7
作者 Li Xiongyan Li Hongqi +3 位作者 Zhou Jinyu He Xu Chen Yihan Yu Hongyan 《Petroleum Science》 SCIE CAS CSCD 2011年第1期49-54,共6页
Low gas-saturation reservoirs are gas bearing intervals whose gas saturation is less than 47%. They are common in the Quaternary of the Sanhu area in the Qaidam Basin.Due to the complex genesis mechanisms and special ... Low gas-saturation reservoirs are gas bearing intervals whose gas saturation is less than 47%. They are common in the Quaternary of the Sanhu area in the Qaidam Basin.Due to the complex genesis mechanisms and special geological characteristics,the logging curves of low gas-saturation reservoirs are characterized by ambiguity and diversity,namely without significant log response characteristics. Therefore,it is particularly difficult to identify the low gas-saturation reservoirs in the study area.In addition,the traditional methods such as using the relations among lithology,electrical property,physical property and gas bearing property,as well as their threshold values,can not effectively identify low gas-saturation reservoirs.To solve this problem,we adopt the decision tree,support vector machine and rough set methods to establish a predictive model of low gas-saturation reservoirs,which is capable of classifying a mass of multi-dimensional and fuzzy data.According to the transparency of learning processes and the understandability of learning results,the predictive model was also revised by absorbing the actual reservoir characteristics.Practical applications indicate that the predictive model is effective in identifying low gas-saturation reservoirs in the study area. 展开更多
关键词 Sanhu area Qaidam Basin low gas-saturation reservoir decision tree support vector machine rough set predictive model IDENTIFICATION
下载PDF
Development of the theory and technology for low permeability reservoirs in China 被引量:7
8
作者 HU Wenrui WEI Yi BAO Jingwei 《Petroleum Exploration and Development》 2018年第4期685-697,共13页
The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based... The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies. 展开更多
关键词 low permeability oil and gas reservoir SEEPAGE THEORY volume FRACTURING WATERFLOODING technology WELL location optimization horizontal WELL technical DEVELOPMENT direction
下载PDF
Study on Reducing Injection Pressure of Low Permeability Reservoirs Characterized by High Temperature and High Salinity 被引量:4
9
作者 Zhao Lin Qin Bing +2 位作者 Wu Xiongjun Wang Zenglin Jiang Jianlin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第2期44-54,共11页
In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized... In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well. 展开更多
关键词 low permeability reservoir quaternary ammonium salt betaine surfactant interfacial tension reducing injection pressure enhancing oil recovery
下载PDF
Model building for Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field 被引量:3
10
作者 SONG Fan HOU Jia-gen SU Ni-na 《Mining Science and Technology》 EI CAS 2009年第2期245-251,共7页
In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controll... In order to build a model for the Chang-8 low permeability sandstone reservoir in the Yanchang formation of the Xifeng oil field,we studied sedimentation and diagenesis of sandstone and analyzed major factors controlling this low permeability reservoir.By doing so,we have made clear that the spatial distribution of reservoir attribute parameters is controlled by the spatial distribution of various kinds of sandstone bodies.By taking advantage of many coring wells and high quality logging data,we used regression analysis for a single well with geological conditions as constraints,to build the interpretation model for logging data and to calculate attribute parameters for a single well,which ensured accuracy of the 1-D vertical model.On this basis,we built a litho-facies model to replace the sedimentary facies model.In addition,we also built a porosity model by using a sequential Gaussian simulation with the lithofacies model as the constraint.In the end,we built a permeability model by using Markov-Bayes simula-tion,with the porosity attribute as the covariate.The results show that the permeability model reflects very well the relative differences between low permeability values,which is of great importance for locating high permeability zones and forecasting zones favorable for exploration and exploitation. 展开更多
关键词 Xifeng oil field low permeability reservoir attribute parameter Markov-Bayes model permeability model
下载PDF
Pore structure differences of the extra-low permeability sandstone reservoirs and the causes of low resistivity oil layers: A case study of Block Yanwumao in the middle of Ordos Basin, NW China 被引量:3
11
作者 WANG Jianmin ZHANG San 《Petroleum Exploration and Development》 2018年第2期273-280,共8页
The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example.... The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers. 展开更多
关键词 ORDOS Basin Chang 6 OIL layers extra-low permeability reservoir low RESISTIVITY OIL layer pore structure MUD invasion low RESISTIVITY cause
下载PDF
Influences of lithology on in-situ stress field in low permeability reservoirs in Bonan Oilfield, Bohai Bay Basin, China 被引量:1
12
作者 LI Zhipeng LIU Xiantai +1 位作者 YANG Yong BU Lixia 《Petroleum Exploration and Development》 2019年第4期729-738,共10页
The differences of rock mechanical properties were analyzed based on triaxial compression test in low permeability reservoirs of the Bonan Oilfield. Through the analysis of reservoir mechanics, the influence mechanism... The differences of rock mechanical properties were analyzed based on triaxial compression test in low permeability reservoirs of the Bonan Oilfield. Through the analysis of reservoir mechanics, the influence mechanisms of different mechanical properties of rocks on reservoir in-situ stress were studied. By means of stress ellipse and finite element simulation, the influence rules of different mechanical properties of rocks on in-situ stress field were discussed. For the low permeability reservoirs of the Bonan Oilfield, the coarser rock has a larger Young’s modulus value and a lower Poisson’s ratio. The rock mechanical parameters and stress-strain relationship of sandstone facies and mudstone facies are different. Different rocks have different mechanical properties, which cause extra stress at the lithological contact interface, and the existence of extra stress affects the reservoir in-situ stress. Without considering the influence of structural features on the in-situ stress field, the reservoir in-situ stress is controlled by the magnitude of extra stress and the angle between lithological contact surface and boundary stress. 展开更多
关键词 lithofacies mechanical property reservoir in-situ STRESS low PERMEABILITY reservoir STRESS field Bonan OILFIELD
下载PDF
Study on the Variation Rule of Produced Oil Components during CO_(2) Flooding in Low Permeability Reservoirs 被引量:1
13
作者 Ganggang Hou Tongjing Liu +2 位作者 Xinyu Yuan Jirui Hou Pengxiang Diwu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期1223-1246,共24页
CO_(2) flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs.Both the experimental results and the oilfield production data indicate that produced oil components(POC)wil... CO_(2) flooding has been widely studied and applied to improve oil recovery from low permeability reservoirs.Both the experimental results and the oilfield production data indicate that produced oil components(POC)will vary during CO_(2) flooding in low permeability reservoirs.However,the present researches fail to explain the variation reason and rule.In this study,the physical model of the POC variation during CO_(2) flooding in low permeability reservoir was established,and the variation reason and rule were defined.To verify the correctness of the physical model,the interaction rule of the oil-CO_(2) system was studied by related experiments.The numerical model,including 34 components,was established based on the precise experiments matching,and simulated the POC variation during CO_(2) flooding in low permeability reservoir at different inter-well reservoir characteristics.The POC monitoring data of the CO_(2) flooding pilot test area in northeastern China were analyzed,and the POC variation rule during the oilfield production was obtained.The research results indicated that the existence of the inter-well channeling-path and the permeability difference between matrix and channeling-path are the main reasons for the POC variation during CO_(2) flooding in low permeability reservoirs.The POC variation rules are not the same at different inter-well reservoir characteristics.For the low permeability reservoirs with homogeneous inter-well reservoir,the variation of the light hydrocarbon content in POC increases initially followed by a decrease,while the variation of the heavy hydrocarbon content in POC is completely opposite.The carbon number of the most abundant component in POC will gradually increase.For the low permeability reservoirs with the channeling-path existing in the inter-well reservoir,the variation rule of the light hydrocarbon content in POC is increase-decrease-increase-decrease,while the variation rule of the heavy hydrocarbon content in POC is completely opposite.The carbon number variation rule of the most abundant component in POC is increase-decrease-increase. 展开更多
关键词 low permeability reservoir CO_(2)flooding produced oil component inter-well reservoirs characteristic
下载PDF
The Contribution of the Geospatial Information to the Hydrological Modelling of a Watershed with Reservoirs: Case of Low Oum Er Rbiaa Basin (Morocco) 被引量:1
14
作者 Youness Kharchaf Hassan Rhinane +1 位作者 Abdelhadi Kaoukaya Abdelhamid Fadil 《Journal of Geographic Information System》 2013年第3期258-268,共11页
Water is undoubtedly the most vital natural resource. Water use management is one of the greatest challenges that face humanity. The demand for water is continuously growing because of the population growth, the inten... Water is undoubtedly the most vital natural resource. Water use management is one of the greatest challenges that face humanity. The demand for water is continuously growing because of the population growth, the intensive urbanization and the development of industrial and agricultural activities. To face the increasing pressure on this vital resource, it is so necessary to set up the adequate instruments to ensure a rational and efficient management of this resource. In this context, the hydrological modeling is largely used as an instrument to assess the functioning of these resources at watershed scale. In addition, the use of spatial models let to depict and simulate the watershed processes at small spatial and heterogeneous scales that reflect the field reality more accurate and more realistic as possible. However, the use of spatial models requires geospatial data that must be gathered at very fine scales. The aim of this study is to highlight the contribution of geospatial data to assess the hydrologic modeling of watershed by using a spatial hydro-agricultural model, notably the SWAT model (Soil and water Assessment Tool). The study area is the Basin of Low Oum Er Rbiaa River which extends from the Al Massira dam to its outlet in the Atlantic Ocean. This watershed includes a set of dams (Daourat, Imfout and Sidi Maachou) built in waterfall fashion along the river. The objective was to simulate the hydrological functioning of this area that had never been modeled in order to assess the management of these reservoirs used essentially to produce electricity and fresh water. The implementation of the SWAT model required a spatial database that was built from topography, soil, land use and climate data. The calibration and validation of the model was carried out on a daily basis over several years (2001-2010) using The ArcSWAT tool integrated in ArcGIS software and the Parasol optimization method. The calibration of SWAT model was successfully done with 0.6 as value of Nash coefficient used commonly in hydrology to evaluate the model performance. The calibrated model was then used to estimate the hydrological balance sheet of the Low Oum Er Rbiaa to model the intermediate contribution of the three reservoirs situated in the watershed. 展开更多
关键词 Modeling HYDROLOGY low Oum ER Rbiaa reservoirS GIS SWAT ArcSWAT WATERSHED
下载PDF
Timing of advanced water flooding in low permeability reservoirs 被引量:2
15
作者 XIE Xiao-qing JIANG Han-qiao +2 位作者 CHEN Min-feng LIU Tong-jing ZHANG Wei 《Mining Science and Technology》 EI CAS 2009年第1期124-128,共5页
It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a rese... It is very important to design the optimum starting time of water injection for the development of low permeability reservoirs. In this type of reservoir the starting time of water injection will be affected by a reservoir pressure-sensitive effect. In order to optimize the starting time of water injection in low permeability reservoirs, this effect of pressure change on rock permeability of low permeability reservoirs was, at first, studied by physical simulation. It was shown that the rock permeability decreases exponentially with an increase in formation pressure. Secondly, we conducted a reservoir engineering study, from which we obtained analytic relationships between formation pressure, oil production rate, water production rate and water injection rate. After our physical, theoretical and economical analyses, we proposed an approach which takes the pressure-sensitive effect into consideration and designed the optimum starting time of water injection, based on the principle of material balance. Finally, the corresponding software was developed and applied to one block of the Jiangsu Oilfield. It is shown that water injection, in advance of production, can decrease the adverse impact of the pressure-sensitive effect on low permeability reservoir development. A water-flooding project should be preferably initiated in advance of production for no more than one year and the optimum ratio of formation pressure to initial formation pressure should be maintained at a level between 1.05 and 1.2. 展开更多
关键词 low permeability reservoir water injection in advance of production pressure-sensitive effect starting time of water injection deformation of porous medium
下载PDF
Characteristics of Chang 2~1 Low PermeabilitySandstone Reservoir in Shunning Oil Field 被引量:1
16
作者 WANG Jian-min YU Liu-ying 《Journal of China University of Mining and Technology》 EI 2006年第2期223-227,共5页
Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeabilit... Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeability reservoir belongs to the classification of middle-to-fine sized feldspar sandstone, with its components being low in ma- turity, deposited in distributary rivers in the front of the delta; 2) the reservoir is obviously dominated by a low or a very low permeability with a linear variation tendency different from that of the ultra-low permeability reservoir; 3) the spa- tial variation in lithology and physical properties of the reservoir are controlled by the sedimentary facies zones, and 4) the physical property of the reservoir is significantly influenced by clastic constituents and their structure, and the con- stituent of cement materials and their content. The result also shows that the diagenesis action of the reservoir is quite strong in which dissolution greatly modified the reservoir In addition, the inter-granular dissolved pores are the mainly developed ones and the micro-structure is dominated by the combination of middle-to-large sized pores with fine-to-coarse throats. Finally, the radius of the throats is in good exponential correlation with permeability and the seepage capacity comes from those large sized throats. 展开更多
关键词 Chang 2^1 reservoir low permeability: reservoir characteristic EVALUATION
下载PDF
Genesis of the low-permeability reservoir bed of upper Triassic Xujiahe Formation in Xinchang gas field,western Sichuan Depression 被引量:9
17
作者 Xu Zhangyou Zhang Xiaoyu +1 位作者 Wu Shenghe Zhao Yan 《Petroleum Science》 SCIE CAS CSCD 2008年第3期230-237,共8页
The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mec... The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds. 展开更多
关键词 low-permeability reservoir diagenetic reservoir facies Xujiahe Formation upper Triassic Xinchang gas field western Sichuan Depression
下载PDF
Chlorite cement and its effect on the reservoir quality of sandstones from the Panyu low-uplift,Pearl River Mouth Basin 被引量:15
18
作者 Chen Guojun Du Guichao +2 位作者 Zhang Gongcheng Wang Qi Lv Chengfu 《Petroleum Science》 SCIE CAS CSCD 2011年第2期143-150,共8页
Based on porosity and permeability measurements, mercury porosimetry measurements, thin section analyses, SEM observations, X-ray diffraction (XRD) analysis and granulometric analyses, diagenetic features of reservo... Based on porosity and permeability measurements, mercury porosimetry measurements, thin section analyses, SEM observations, X-ray diffraction (XRD) analysis and granulometric analyses, diagenetic features of reservoir sandstones taken from the Zhuhai formation in the Panyu low-uplift of the Pear River Mouth Basin were examined. This study shows that chlorite cements are one of the most important diagenetic features of reservoir sandstones. The precipitation of chlorite was controlled by multiple factors and its development occurred early in eo-diagenesis and continued till Stage A of middle diagenesis. The precipitation of chlorite at the early stage was mainly affected by the sedimentary environment and provenance. Abundant Fe- and Mg-rich materials were supplied during the deposition of distributary channel sediments in the deltaic front setting and mainly in alkaline conditions. With the burial depth increasing, smectite and kaolinite tended to be transformed into chlorite. Smectite cements were completely transformed into chlorite in sandstones of the studied area. Volcanic lithics rich in Fe and Mg materials were dissolved and released Fe2+ and Mg 2+ into the pore water. These cations precipitated as chlorite cements in middle diagenesis in an alkaline diagenetic environment. Chlorite coatings acted as porosity and permeability, thus helping preserve cements in the chlorite cemented sandstones. The reservoir quality of chlorite cemented sandstones is much better than sandstones without chlorite cements. Chlorite cements play an important role in the reservoir evolution that was mainly characterized by preserving intergranular porosity and forming better pore-throat structures of sandstones. 展开更多
关键词 Chlorite cement DIAGENESIS reservoir quality Panyu low-uplift Pearl River Mouth Basin
下载PDF
Diagenesis-porosity evolution and“sweet spot”distribution of low permeability reservoirs:A case study from Oligocene Zhuhai Formation in Wenchang A sag,Pear River Mouth Basin,northern South China Sea 被引量:1
19
作者 YOU Li XU Shouli +3 位作者 LI Cai ZHANG Yingzhao ZHAO Zhanjie ZHU Peiyuan 《Petroleum Exploration and Development》 2018年第2期251-263,共13页
The characteristics of low permeability reservoirs and distribution of sweet spots in the Oligocene Zhuhai Formation of Wenchang A sag, Pearl River Basin were investigated by core observation and thin section analysis... The characteristics of low permeability reservoirs and distribution of sweet spots in the Oligocene Zhuhai Formation of Wenchang A sag, Pearl River Basin were investigated by core observation and thin section analysis. The study results show that there develop the fine, medium and coarse sandstone reservoirs of tidal flat–fan delta facies, which are of mostly low permeability and locally medium permeability. There are two kinds of pore evolution patterns: oil charging first and densification later, the reservoirs featuring this pattern are mainly in the third member of Zhuhai Formation between the south fault zone and the sixth fault zone, and the pattern of densification first and gas charging later is widespread across the study area. Strong compaction and local calcium cementation are the key factors causing low permeability of the reservoirs in the Zhuhai Formation. Thick and coarse grain sand sedimentary body is the precondition to form "sweet spot" reservoirs. Weak compaction and cementation, dissolution, early hydrocarbon filling and authigenic chlorite coating are the main factors controlling formation of "sweet spot" reservoir. It is predicted that there develop between the south fault and sixth fault zones the Class Ⅰ "sweet spot" in medium compaction zone, Class Ⅱ "sweet spot" in nearly strong compaction zone, Class Ⅲ "sweet spot" reservoir in the nearly strong to strong compaction zone with oil charging at early stage, and Class IV "sweet spot" reservoir in the strong compaction and authigenic chlorite coating protection zone in the sixth fault zone. 展开更多
关键词 low permeability reservoir pore evolution hydrocarbon charging 'sweet spot' DISTRIBUTION Zhuhai Formation OLIGOCENE Wenchang A SAG northern South China Sea
下载PDF
An overview of efficient development practices at low permeability sandstone reservoirs in China 被引量:1
20
作者 Bingyu Ji Jichao Fang 《Energy Geoscience》 2023年第3期149-157,共9页
Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditio... Low permeability sandstone reservoirs in China typically have more complicated geological conditions, pore structures, and flow characteristics as compared to medium-to-high-permeability sandstone reservoirs. Traditional geological and seepage theories, and engineering methods are not applicable to the development of these low permeability reservoirs, and wells drilled into them often produce oil and gas at very low rates. Recent breakthroughs in reservoir exploitation technology have greatly improved the productivity of low permeability reservoirs, making them the primary target for oil exploration and extraction in China. The development theories and practices applied to low permeability reservoirs in China are reviewed in this study— based on relevant geological and engineering practices, including drilling, fracturing, recovery, and surface engineering. A unique series of technological advances that aid the development of low permeability reservoirs in China are summarized here. This study may serve as a meaningful guide in achieving scale efficiency for the development of low permeability reservoirs. 展开更多
关键词 Well pattern FRACTURING Development model reservoir description low permeability reservoir
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部