The intrinsic defects in epitaxial semi-insulating 4H-SiC prepared by low pressure chemical vapor deposition (LPCVD) are studied by electron spin resonance (ESR) with different illumination times. The results show...The intrinsic defects in epitaxial semi-insulating 4H-SiC prepared by low pressure chemical vapor deposition (LPCVD) are studied by electron spin resonance (ESR) with different illumination times. The results show that the intrinsic defects in as-grown 4H-SiC consist of carbon vacancy (Vc) and complex-compounds-related Vc. There are two other apexes presented in the ESR spectra after illumination by Xe light, which are likely to be Vsi and VcCsi. Illumination time changes the relative density of intrinsic defects in 4H-SiC; the relative density of intrinsic defects reaches a maximum when the illumination time is 2.5 min, and the ratio of Vc to complex compounds is minimized simultaneously. It can be deduced that some Vsi may be transformed to the complex-compounds-related Vc because of the illumination.展开更多
The purpose of this work was to grow SiC as binder to adhere diamond particles to graphite substrate by low pressure chemical vapor deposition (LPCVD) at 1100 ℃ and 100 Pa using methyltrichlorosilane (MTS: CH3Si...The purpose of this work was to grow SiC as binder to adhere diamond particles to graphite substrate by low pressure chemical vapor deposition (LPCVD) at 1100 ℃ and 100 Pa using methyltrichlorosilane (MTS: CH3SiCl3) as precursor. The composite coatings on graphite substrates were analyzed by various techniques. Results show that a dense SiC coating with a cloud-cluster shape was formed both on the diamond particles and the substrate after deposition, The thermal stress (290.6 MPa) strengthened the interfacial bonding between the diamond particle and the SiC coating, which is advantageous for the purpose of adhering diamond particles to graphite substrate. The applied load of sliding wear test was found to affect not only the friction coefficient, but also the wear surface morphology. With increasing loads, the asperity penetration was high and the friction coefficient decreased.展开更多
The simultaneous control of residual stress and resistivity of polysilicon thin films by adjusting the deposition parameters and annealing conditions is studied. In situ boron doped polysilicon thin films deposited at...The simultaneous control of residual stress and resistivity of polysilicon thin films by adjusting the deposition parameters and annealing conditions is studied. In situ boron doped polysilicon thin films deposited at 520 ℃ by low pressure chemical vapor deposition (LPCVD) are amorphous with relatively large compressive residual stress and high resistivity. Annealing the amorphous films in a temperature range of 600-800 ℃ gives polysilicon films nearly zero-stress and relatively low resistivity. The low residual stress and low resistivity make the polysilicon films attractive for potential applications in micro-electro-mechanical-systems (MEMS) devices, especially in high resonance frequency (high-f) and high quality factor (high-Q) MEMS resonators. In addition, polysilicon thin films deposited at 570 ℃ and those without the post annealing process have low resistivities of 2-5 mΩ·cm. These reported approaches avoid the high temperature annealing process (〉 1000 ℃), and the promising properties of these films make them suitable for high-Q and high-f MEMS devices.展开更多
基金supported by the National Natural Science Foundation of China(No.60606022)the Advanced Fund(No.9140A08050508)the Applied Materials Innovation Fund (Nos.XA-AM-200607,XA-AM-200704)
文摘The intrinsic defects in epitaxial semi-insulating 4H-SiC prepared by low pressure chemical vapor deposition (LPCVD) are studied by electron spin resonance (ESR) with different illumination times. The results show that the intrinsic defects in as-grown 4H-SiC consist of carbon vacancy (Vc) and complex-compounds-related Vc. There are two other apexes presented in the ESR spectra after illumination by Xe light, which are likely to be Vsi and VcCsi. Illumination time changes the relative density of intrinsic defects in 4H-SiC; the relative density of intrinsic defects reaches a maximum when the illumination time is 2.5 min, and the ratio of Vc to complex compounds is minimized simultaneously. It can be deduced that some Vsi may be transformed to the complex-compounds-related Vc because of the illumination.
基金financially supported by the Major Achievements of Jiangsu Province(BA20130987)the Innovation Fund of Nanjing University of Aeronautics and Astronautics(No.KFJJ201440)
文摘The purpose of this work was to grow SiC as binder to adhere diamond particles to graphite substrate by low pressure chemical vapor deposition (LPCVD) at 1100 ℃ and 100 Pa using methyltrichlorosilane (MTS: CH3SiCl3) as precursor. The composite coatings on graphite substrates were analyzed by various techniques. Results show that a dense SiC coating with a cloud-cluster shape was formed both on the diamond particles and the substrate after deposition, The thermal stress (290.6 MPa) strengthened the interfacial bonding between the diamond particle and the SiC coating, which is advantageous for the purpose of adhering diamond particles to graphite substrate. The applied load of sliding wear test was found to affect not only the friction coefficient, but also the wear surface morphology. With increasing loads, the asperity penetration was high and the friction coefficient decreased.
基金supported by the National High Technology Research and Development Program of China(No.2007AA04Z322)the State Key Development Program for Basic Research of China (No.2009CB320305)the Chinese Academy of Sciences
文摘The simultaneous control of residual stress and resistivity of polysilicon thin films by adjusting the deposition parameters and annealing conditions is studied. In situ boron doped polysilicon thin films deposited at 520 ℃ by low pressure chemical vapor deposition (LPCVD) are amorphous with relatively large compressive residual stress and high resistivity. Annealing the amorphous films in a temperature range of 600-800 ℃ gives polysilicon films nearly zero-stress and relatively low resistivity. The low residual stress and low resistivity make the polysilicon films attractive for potential applications in micro-electro-mechanical-systems (MEMS) devices, especially in high resonance frequency (high-f) and high quality factor (high-Q) MEMS resonators. In addition, polysilicon thin films deposited at 570 ℃ and those without the post annealing process have low resistivities of 2-5 mΩ·cm. These reported approaches avoid the high temperature annealing process (〉 1000 ℃), and the promising properties of these films make them suitable for high-Q and high-f MEMS devices.